Q-SENN_Interface / configs /optim_params.py
Haaribo's picture
Add application file
9b896f5
raw
history blame contribute delete
810 Bytes
# order: lr,weight_decay, step_lr, step_lr_gamma
import math
class EvaluatedDict:
def __init__(self, d, func):
self.dict = d
self.func = func
def __getitem__(self, key):
return self.dict[self.func(key)]
dense_params = EvaluatedDict({False: [0.005, 0.0005, 30, 0.4, 150],True: [None,None,None,None,None],}, lambda x: x == "ImageNet")
def calculate_lr_from_args( epochs, step_lr, start_lr, step_lr_decay):
# Gets the final learning rate after dense training with step_lr_schedule.
n_steps = math.floor((epochs - step_lr) / step_lr)
final_lr = start_lr * step_lr_decay ** n_steps
return final_lr
ft_params =EvaluatedDict({False: [1e-4, 0.0005, 10, 0.4, 40],True:[[calculate_lr_from_args(150,30,0.005, 0.4), 0.0005, 10, 0.4, 40]]}, lambda x: x == "ImageNet")