Spaces:
Sleeping
Sleeping
import copy | |
import time | |
import torch | |
import torch.nn as nn | |
from torch.hub import load_state_dict_from_url | |
from torchvision.models import get_model | |
# from scripts.modelExtensions.crossModelfunctions import init_experiment_stuff | |
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | |
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', | |
'wide_resnet50_2', 'wide_resnet101_2', | |
'wide_resnet50_3', 'wide_resnet50_4', 'wide_resnet50_5', | |
'wide_resnet50_6', ] | |
from architectures.FinalLayer import FinalLayer | |
from architectures.utils import SequentialWithArgs | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', | |
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', | |
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', | |
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', | |
} | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
__constants__ = ['downsample'] | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
base_width=64, dilation=1, norm_layer=None, features=None): | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x, no_relu=False): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
if no_relu: | |
return out | |
return self.relu(out) | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
__constants__ = ['downsample'] | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
base_width=64, dilation=1, norm_layer=None, features=None): | |
super(Bottleneck, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
width = int(planes * (base_width / 64.)) * groups | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, width) | |
self.bn1 = norm_layer(width) | |
self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
self.bn2 = norm_layer(width) | |
if features is None: | |
self.conv3 = conv1x1(width, planes * self.expansion) | |
self.bn3 = norm_layer(planes * self.expansion) | |
else: | |
self.conv3 = conv1x1(width, features) | |
self.bn3 = norm_layer(features) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x, no_relu=False, early_exit=False): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
if no_relu: | |
return out | |
return self.relu(out) | |
class ResNet(nn.Module, FinalLayer): | |
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, | |
groups=1, width_per_group=64, replace_stride_with_dilation=None, | |
norm_layer=None, changed_strides=False,): | |
super(ResNet, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self._norm_layer = norm_layer | |
widths = [64, 128, 256, 512] | |
self.inplanes = 64 | |
self.dilation = 1 | |
if replace_stride_with_dilation is None: | |
# each element in the tuple indicates if we should replace | |
# the 2x2 stride with a dilated convolution instead | |
replace_stride_with_dilation = [False, False, False] | |
if len(replace_stride_with_dilation) != 3: | |
raise ValueError("replace_stride_with_dilation should be None " | |
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | |
self.groups = groups | |
self.base_width = width_per_group | |
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | |
dilate=replace_stride_with_dilation[0]) | |
self.sstride = 2 | |
if changed_strides: | |
self.sstride = 1 | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=self.sstride, | |
dilate=replace_stride_with_dilation[1]) | |
self.stride = 2 | |
if changed_strides: | |
self.stride = 1 | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=self.stride, | |
dilate=replace_stride_with_dilation[2]) | |
FinalLayer.__init__(self, num_classes, 512 * block.expansion) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, | |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) | |
elif isinstance(m, BasicBlock): | |
nn.init.constant_(m.bn2.weight, 0) | |
def _make_layer(self, block, planes, blocks, stride=1, dilate=False, last_block_f=None): | |
norm_layer = self._norm_layer | |
downsample = None | |
previous_dilation = self.dilation | |
if dilate: | |
self.dilation *= stride | |
stride = 1 | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, | |
self.base_width, previous_dilation, norm_layer)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
krepeep = None | |
if last_block_f is not None and _ == blocks - 1: | |
krepeep = last_block_f | |
layers.append(block(self.inplanes, planes, groups=self.groups, | |
base_width=self.base_width, dilation=self.dilation, | |
norm_layer=norm_layer, features=krepeep)) | |
return SequentialWithArgs(*layers) | |
def _forward(self, x, with_feature_maps=False, with_final_features=False): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
feature_maps = self.layer4(x, no_relu=True) | |
feature_maps = torch.functional.F.relu(feature_maps) | |
return self.transform_output( feature_maps, with_feature_maps, | |
with_final_features) | |
# Allow for accessing forward method in a inherited class | |
forward = _forward | |
def _resnet(arch, block, layers, pretrained, progress, **kwargs): | |
model = ResNet(block, layers, **kwargs) | |
if pretrained: | |
state_dict = load_state_dict_from_url(model_urls[arch], | |
progress=progress) | |
if kwargs["num_classes"] == 1000: | |
state_dict["linear.weight"] = state_dict["fc.weight"] | |
state_dict["linear.bias"] = state_dict["fc.bias"] | |
model.load_state_dict(state_dict, strict=False) | |
return model | |
def resnet18(pretrained=False, progress=True, **kwargs): | |
r"""ResNet-18 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, | |
**kwargs) | |
def resnet34(pretrained=False, progress=True, **kwargs): | |
r"""ResNet-34 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, | |
**kwargs) | |
def resnet50(pretrained=False, progress=True, **kwargs): | |
r"""ResNet-50 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, | |
**kwargs) | |
def resnet101(pretrained=False, progress=True, **kwargs): | |
r"""ResNet-101 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, | |
**kwargs) | |
def resnet152(pretrained=False, progress=True, **kwargs): | |
r"""ResNet-152 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, | |
**kwargs) | |
def resnext50_32x4d(pretrained=False, progress=True, **kwargs): | |
r"""ResNeXt-50 32x4d model from | |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['groups'] = 32 | |
kwargs['width_per_group'] = 4 | |
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def resnext101_32x8d(pretrained=False, progress=True, **kwargs): | |
r"""ResNeXt-101 32x8d model from | |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['groups'] = 32 | |
kwargs['width_per_group'] = 8 | |
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_2(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-50-2 model from | |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ | |
The model is the same as ResNet except for the bottleneck number of channels | |
which is twice larger in every block. The number of channels in outer 1x1 | |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 | |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 2 | |
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_3(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-50-3 model | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 3 | |
return _resnet('wide_resnet50_3', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_4(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-50-4 model | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 4 | |
return _resnet('wide_resnet50_4', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_5(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-50-5 model | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 5 | |
return _resnet('wide_resnet50_5', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_6(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-50-6 model | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 6 | |
return _resnet('wide_resnet50_6', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet101_2(pretrained=False, progress=True, **kwargs): | |
r"""Wide ResNet-101-2 model from | |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ | |
The model is the same as ResNet except for the bottleneck number of channels | |
which is twice larger in every block. The number of channels in outer 1x1 | |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 | |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 2 | |
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], | |
pretrained, progress, **kwargs) | |