Spaces:
Sleeping
Sleeping
import torch.nn | |
class SLDDLevel(torch.nn.Module): | |
def __init__(self, selection, weight_at_selection,mean, std, bias=None): | |
super().__init__() | |
self.register_buffer('selection', torch.tensor(selection, dtype=torch.long)) | |
num_classes, n_features = weight_at_selection.shape | |
selected_mean = mean | |
selected_std = std | |
if len(selected_mean) != len(selection): | |
selected_mean = selected_mean[selection] | |
selected_std = selected_std[selection] | |
self.mean = torch.nn.Parameter(selected_mean) | |
self.std = torch.nn.Parameter(selected_std) | |
if bias is not None: | |
self.layer = torch.nn.Linear(n_features, num_classes) | |
self.layer.bias = torch.nn.Parameter(bias, requires_grad=False) | |
else: | |
self.layer = torch.nn.Linear(n_features, num_classes, bias=False) | |
self.layer.weight = torch.nn.Parameter(weight_at_selection, requires_grad=False) | |
def weight(self): | |
return self.layer.weight | |
def bias(self): | |
if self.layer.bias is None: | |
return torch.zeros(self.layer.out_features) | |
else: | |
return self.layer.bias | |
def forward(self, input): | |
input = (input - self.mean) / torch.clamp(self.std, min=1e-6) | |
return self.layer(input) | |