Q-SENN_Interface / sparsification /FeatureSelection.py
Haaribo's picture
Add application file
9b896f5
raw
history blame
22 kB
from argparse import ArgumentParser
import logging
import math
import os.path
import sys
import time
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from glm_saga.elasticnet import maximum_reg_loader, get_device, elastic_loss_and_acc_loader
from torch import nn
import torch as ch
from sparsification.utils import safe_zip
# TODO checkout this change: Marks changes to the group version of glmsaga
"""
This would need glm_saga to run
usage to select 50 features with parameters as in paper:
metadata contains information about the precomputed train features in feature_loaders
args contains the default arguments for glm-saga, as described at the bottom
def get_glm_to_zero(feature_loaders, metadata, args, num_classes, device, train_ds, Ntotal):
num_features = metadata["X"]["num_features"][0]
fittingClass = FeatureSelectionFitting(num_features, num_lasses, args, 0.8,
50,
True,0.1,
lookback=3, tol=1e-4,
epsilon=1,)
to_drop, test_acc = fittingClass.fit(feature_loaders, metadata, device)
return to_drop
to_drop is then used to remove the features from the downstream fitting and finetuning.
"""
class FeatureSelectionFitting:
def __init__(self, n_features, n_classes, args, selalpha, nKeep, lam_fac,out_dir, lookback=None, tol=None,
epsilon=None):
"""
This is an adaption of the group version of glm-saga (https://github.com/MadryLab/DebuggableDeepNetworks)
The function extended_mask_max covers the changed operator,
Args:
n_features:
n_classes:
args: default args for glmsaga
selalpha: alpha for elastic net
nKeep: target number features
lam_fac: discount factor for lambda
parameters of glmsaga
lookback:
tol:
epsilon:
"""
self.selected_features = torch.zeros(n_features, dtype=torch.bool)
self.num_features = n_features
self.selalpha = selalpha
self.lam_Fac = lam_fac
self.out_dir = out_dir
self.n_classes = n_classes
self.nKeep = nKeep
self.args = self.extend_args(args, lookback, tol, epsilon)
# Extended Proximal Operator for Feature Selection
def extended_mask_max(self, greater_to_keep, thresh):
prev = greater_to_keep[self.selected_features]
greater_to_keep[self.selected_features] = torch.min(greater_to_keep)
max_entry = torch.argmax(greater_to_keep)
greater_to_keep[self.selected_features] = prev
mask = torch.zeros_like(greater_to_keep)
mask[max_entry] = 1
final_mask = (greater_to_keep > thresh)
final_mask = final_mask * mask
allowed_to_keep = torch.logical_or(self.selected_features, final_mask)
return allowed_to_keep
def extend_args(self, args, lookback, tol, epsilon):
for key, entry in safe_zip(["lookbehind", "tol",
"lr_decay_factor", ], [lookback, tol, epsilon]):
if entry is not None:
setattr(args, key, entry)
return args
# Grouped L1 regularization
# proximal operator for f(weight) = lam * \|weight\|_2
# where the 2-norm is taken columnwise
def group_threshold(self, weight, lam):
norm = weight.norm(p=2, dim=0) + 1e-6
# print(ch.sum((norm > lam)))
return (weight - lam * weight / norm) * self.extended_mask_max(norm, lam)
# Elastic net regularization with group sparsity
# proximal operator for f(x) = alpha * \|x\|_1 + beta * \|x\|_2^2
# where the 2-norm is taken columnwise
def group_threshold_with_shrinkage(self, x, alpha, beta):
y = self.group_threshold(x, alpha)
return y / (1 + beta)
def threshold(self, weight_new, lr, lam):
alpha = self.selalpha
if alpha == 1:
# Pure L1 regularization
weight_new = self.group_threshold(weight_new, lr * lam * alpha)
else:
# Elastic net regularization
weight_new = self.group_threshold_with_shrinkage(weight_new, lr * lam * alpha,
lr * lam * (1 - alpha))
return weight_new
# Train an elastic GLM with proximal SAGA
# Since SAGA stores a scalar for each example-class pair, either pass
# the number of examples and number of classes or calculate it with an
# initial pass over the loaders
def train_saga(self, linear, loader, lr, nepochs, lam, alpha, group=True, verbose=None,
state=None, table_device=None, n_ex=None, n_classes=None, tol=1e-4,
preprocess=None, lookbehind=None, family='multinomial', logger=None):
if logger is None:
logger = print
with ch.no_grad():
weight, bias = list(linear.parameters())
if table_device is None:
table_device = weight.device
# get total number of examples and initialize scalars
# for computing the gradients
if n_ex is None:
n_ex = sum(tensors[0].size(0) for tensors in loader)
if n_classes is None:
if family == 'multinomial':
n_classes = max(tensors[1].max().item() for tensors in loader) + 1
elif family == 'gaussian':
for batch in loader:
y = batch[1]
break
n_classes = y.size(1)
# Storage for scalar gradients and averages
if state is None:
a_table = ch.zeros(n_ex, n_classes).to(table_device)
w_grad_avg = ch.zeros_like(weight).to(weight.device)
b_grad_avg = ch.zeros_like(bias).to(weight.device)
else:
a_table = state["a_table"].to(table_device)
w_grad_avg = state["w_grad_avg"].to(weight.device)
b_grad_avg = state["b_grad_avg"].to(weight.device)
obj_history = []
obj_best = None
nni = 0
for t in range(nepochs):
total_loss = 0
for n_batch, batch in enumerate(loader):
if len(batch) == 3:
X, y, idx = batch
w = None
elif len(batch) == 4:
X, y, w, idx = batch
else:
raise ValueError(
f"Loader must return (data, target, index) or (data, target, index, weight) but instead got a tuple of length {len(batch)}")
if preprocess is not None:
device = get_device(preprocess)
with ch.no_grad():
X = preprocess(X.to(device))
X = X.to(weight.device)
out = linear(X)
# split gradient on only the cross entropy term
# for efficient storage of gradient information
if family == 'multinomial':
if w is None:
loss = F.cross_entropy(out, y.to(weight.device), reduction='mean')
else:
loss = F.cross_entropy(out, y.to(weight.device), reduction='none')
loss = (loss * w).mean()
I = ch.eye(linear.weight.size(0))
target = I[y].to(weight.device) # change to OHE
# Calculate new scalar gradient
logits = F.softmax(linear(X))
elif family == 'gaussian':
if w is None:
loss = 0.5 * F.mse_loss(out, y.to(weight.device), reduction='mean')
else:
loss = 0.5 * F.mse_loss(out, y.to(weight.device), reduction='none')
loss = (loss * (w.unsqueeze(1))).mean()
target = y
# Calculate new scalar gradient
logits = linear(X)
else:
raise ValueError(f"Unknown family: {family}")
total_loss += loss.item() * X.size(0)
# BS x NUM_CLASSES
a = logits - target
if w is not None:
a = a * w.unsqueeze(1)
a_prev = a_table[idx].to(weight.device)
# weight parameter
w_grad = (a.unsqueeze(2) * X.unsqueeze(1)).mean(0)
w_grad_prev = (a_prev.unsqueeze(2) * X.unsqueeze(1)).mean(0)
w_saga = w_grad - w_grad_prev + w_grad_avg
weight_new = weight - lr * w_saga
weight_new = self.threshold(weight_new, lr, lam)
# bias parameter
b_grad = a.mean(0)
b_grad_prev = a_prev.mean(0)
b_saga = b_grad - b_grad_prev + b_grad_avg
bias_new = bias - lr * b_saga
# update table and averages
a_table[idx] = a.to(table_device)
w_grad_avg.add_((w_grad - w_grad_prev) * X.size(0) / n_ex)
b_grad_avg.add_((b_grad - b_grad_prev) * X.size(0) / n_ex)
if lookbehind is None:
dw = (weight_new - weight).norm(p=2)
db = (bias_new - bias).norm(p=2)
criteria = ch.sqrt(dw ** 2 + db ** 2)
if criteria.item() <= tol:
return {
"a_table": a_table.cpu(),
"w_grad_avg": w_grad_avg.cpu(),
"b_grad_avg": b_grad_avg.cpu()
}
weight.data = weight_new
bias.data = bias_new
saga_obj = total_loss / n_ex + lam * alpha * weight.norm(p=1) + 0.5 * lam * (1 - alpha) * (
weight ** 2).sum()
# save amount of improvement
obj_history.append(saga_obj.item())
if obj_best is None or saga_obj.item() + tol < obj_best:
obj_best = saga_obj.item()
nni = 0
else:
nni += 1
# Stop if no progress for lookbehind iterationsd:])
criteria = lookbehind is not None and (nni >= lookbehind)
nnz = (weight.abs() > 1e-5).sum().item()
total = weight.numel()
if verbose and (t % verbose) == 0:
if lookbehind is None:
logger(
f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) criteria {criteria:.4f} {dw} {db}")
else:
logger(
f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) obj_best {obj_best}")
if lookbehind is not None and criteria:
logger(
f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) obj_best {obj_best} [early stop at {t}]")
return {
"a_table": a_table.cpu(),
"w_grad_avg": w_grad_avg.cpu(),
"b_grad_avg": b_grad_avg.cpu()
}
logger(f"did not converge at {nepochs} iterations (criteria {criteria})")
return {
"a_table": a_table.cpu(),
"w_grad_avg": w_grad_avg.cpu(),
"b_grad_avg": b_grad_avg.cpu()
}
def glm_saga(self, linear, loader, max_lr, nepochs, alpha, dropout, tries,
table_device=None, preprocess=None, group=False,
verbose=None, state=None, n_ex=None, n_classes=None,
tol=1e-4, epsilon=0.001, k=100, checkpoint=None,
do_zero=True, lr_decay_factor=1, metadata=None,
val_loader=None, test_loader=None, lookbehind=None,
family='multinomial', encoder=None, tot_tries=1):
if encoder is not None:
warnings.warn("encoder argument is deprecated; please use preprocess instead", DeprecationWarning)
preprocess = encoder
device = get_device(linear)
checkpoint = self.out_dir
if preprocess is not None and (device != get_device(preprocess)):
raise ValueError(
f"Linear and preprocess must be on same device (got {get_device(linear)} and {get_device(preprocess)})")
if metadata is not None:
if n_ex is None:
n_ex = metadata['X']['num_examples']
if n_classes is None:
n_classes = metadata['y']['num_classes']
lam_fac = (1 + (tries - 1) / tot_tries)
print("Using lam_fac ", lam_fac)
max_lam = maximum_reg_loader(loader, group=group, preprocess=preprocess, metadata=metadata,
family=family) / max(
0.001, alpha) * lam_fac
group_lam = maximum_reg_loader(loader, group=True, preprocess=preprocess, metadata=metadata,
family=family) / max(
0.001, alpha) * lam_fac
min_lam = epsilon * max_lam
group_min_lam = epsilon * group_lam
# logspace is base 10 but log is base e so use log10
lams = ch.logspace(math.log10(max_lam), math.log10(min_lam), k)
lrs = ch.logspace(math.log10(max_lr), math.log10(max_lr / lr_decay_factor), k)
found = False
if do_zero:
lams = ch.cat([lams, lams.new_zeros(1)])
lrs = ch.cat([lrs, lrs.new_ones(1) * lrs[-1]])
path = []
best_val_loss = float('inf')
if checkpoint is not None:
os.makedirs(checkpoint, exist_ok=True)
file_handler = logging.FileHandler(filename=os.path.join(checkpoint, 'output.log'))
stdout_handler = logging.StreamHandler(sys.stdout)
handlers = [file_handler, stdout_handler]
logging.basicConfig(
level=logging.DEBUG,
format='[%(asctime)s] %(levelname)s - %(message)s',
handlers=handlers
)
logger = logging.getLogger('glm_saga').info
else:
logger = print
while self.selected_features.sum() < self.nKeep: # TODO checkout this change, one iteration per feature
n_feature_to_keep = self.selected_features.sum()
for i, (lam, lr) in enumerate(zip(lams, lrs)):
lam = lam * self.lam_Fac
start_time = time.time()
self.selected_features = self.selected_features.to(device)
state = self.train_saga(linear, loader, lr, nepochs, lam, alpha,
table_device=table_device, preprocess=preprocess, group=group, verbose=verbose,
state=state, n_ex=n_ex, n_classes=n_classes, tol=tol, lookbehind=lookbehind,
family=family, logger=logger)
with ch.no_grad():
loss, acc = elastic_loss_and_acc_loader(linear, loader, lam, alpha, preprocess=preprocess,
family=family)
loss, acc = loss.item(), acc.item()
loss_val, acc_val = -1, -1
if val_loader:
loss_val, acc_val = elastic_loss_and_acc_loader(linear, val_loader, lam, alpha,
preprocess=preprocess,
family=family)
loss_val, acc_val = loss_val.item(), acc_val.item()
loss_test, acc_test = -1, -1
if test_loader:
loss_test, acc_test = elastic_loss_and_acc_loader(linear, test_loader, lam, alpha,
preprocess=preprocess, family=family)
loss_test, acc_test = loss_test.item(), acc_test.item()
params = {
"lam": lam,
"lr": lr,
"alpha": alpha,
"time": time.time() - start_time,
"loss": loss,
"metrics": {
"loss_tr": loss,
"acc_tr": acc,
"loss_val": loss_val,
"acc_val": acc_val,
"loss_test": loss_test,
"acc_test": acc_test,
},
"weight": linear.weight.detach().cpu().clone(),
"bias": linear.bias.detach().cpu().clone()
}
path.append(params)
if loss_val is not None and loss_val < best_val_loss:
best_val_loss = loss_val
best_params = params
found = True
nnz = (linear.weight.abs() > 1e-5).sum().item()
total = linear.weight.numel()
if family == 'multinomial':
logger(
f"{n_feature_to_keep} Feature ({i}) lambda {lam:.4f}, loss {loss:.4f}, acc {acc:.4f} [val acc {acc_val:.4f}] [test acc {acc_test:.4f}], sparsity {nnz / total} [{nnz}/{total}], time {time.time() - start_time}, lr {lr:.4f}")
elif family == 'gaussian':
logger(
f"({i}) lambda {lam:.4f}, loss {loss:.4f} [val loss {loss_val:.4f}] [test loss {loss_test:.4f}], sparsity {nnz / total} [{nnz}/{total}], time {time.time() - start_time}, lr {lr:.4f}")
if self.check_new_feature(linear.weight): # TODO checkout this change, canceling if new feature is used
if checkpoint is not None:
ch.save(params, os.path.join(checkpoint, f"params{n_feature_to_keep}.pth"))
break
if found:
return {
'path': path,
'best': best_params,
'state': state
}
else:
return False
def check_new_feature(self, weight):
# TODO checkout this change, checking if new feature is used
copied_weight = torch.tensor(weight.cpu())
used_features = torch.unique(
torch.nonzero(copied_weight)[:, 1])
if len(used_features) > 0:
new_set = set(used_features.tolist())
old_set = set(torch.nonzero(self.selected_features)[:, 0].tolist())
diff = new_set - old_set
if len(diff) > 0:
self.selected_features[used_features] = True
return True
return False
def fit(self, feature_loaders, metadata, device):
# TODO checkout this change, glm saga code slightly adapted to return to_drop
print("Initializing linear model...")
linear = nn.Linear(self.num_features, self.n_classes).to(device)
for p in [linear.weight, linear.bias]:
p.data.zero_()
print("Preparing normalization preprocess and indexed dataloader")
preprocess = NormalizedRepresentation(feature_loaders['train'],
metadata=metadata,
device=linear.weight.device)
print("Calculating the regularization path")
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
selected_features = self.glm_saga(linear,
feature_loaders['train'],
self.args.lr,
self.args.max_epochs,
self.selalpha, 0, 1,
val_loader=feature_loaders['val'],
test_loader=feature_loaders['test'],
n_classes=self.n_classes,
verbose=self.args.verbose,
tol=self.args.tol,
lookbehind=self.args.lookbehind,
lr_decay_factor=self.args.lr_decay_factor,
group=True,
epsilon=self.args.lam_factor,
metadata=metadata,
preprocess=preprocess, tot_tries=1)
to_drop = np.where(self.selected_features.cpu().numpy() == 0)[0]
test_acc = selected_features["path"][-1]["metrics"]["acc_test"]
torch.set_grad_enabled(True)
return to_drop, test_acc
class NormalizedRepresentation(ch.nn.Module):
def __init__(self, loader, metadata, device='cuda', tol=1e-5):
super(NormalizedRepresentation, self).__init__()
assert metadata is not None
self.device = device
self.mu = metadata['X']['mean']
self.sigma = ch.clamp(metadata['X']['std'], tol)
def forward(self, X):
return (X - self.mu.to(self.device)) / self.sigma.to(self.device)