File size: 21,991 Bytes
9b896f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from argparse import ArgumentParser
import logging
import math
import os.path
import sys
import time
import warnings

import numpy as np
import torch
import torch.nn.functional as F
from glm_saga.elasticnet import maximum_reg_loader, get_device, elastic_loss_and_acc_loader
from torch import nn

import torch as ch

from sparsification.utils import safe_zip

# TODO checkout this change: Marks changes to the group version of glmsaga

"""
This would need glm_saga to run
usage to select 50 features with parameters as in paper:
metadata contains information about the precomputed train features in feature_loaders
args contains the default arguments for glm-saga, as described at the bottom
def get_glm_to_zero(feature_loaders, metadata,  args, num_classes, device, train_ds, Ntotal):
    num_features = metadata["X"]["num_features"][0]
    fittingClass = FeatureSelectionFitting(num_features, num_lasses, args, 0.8,
                                           50,
                                           True,0.1,
                                           lookback=3, tol=1e-4,
                                           epsilon=1,)
    to_drop, test_acc = fittingClass.fit(feature_loaders, metadata, device)
    return to_drop

to_drop is then used to remove the features from the downstream fitting and finetuning.
"""


class FeatureSelectionFitting:
    def __init__(self, n_features, n_classes, args, selalpha, nKeep, lam_fac,out_dir, lookback=None, tol=None,
                 epsilon=None):
        """
        This is an adaption of the group version of glm-saga (https://github.com/MadryLab/DebuggableDeepNetworks)
        The function extended_mask_max covers the changed operator,
        Args:
            n_features:
            n_classes:
            args: default args for glmsaga
            selalpha: alpha for elastic net
            nKeep: target number features
            lam_fac: discount factor for lambda
            parameters of glmsaga
            lookback:
            tol:
            epsilon:
        """
        self.selected_features = torch.zeros(n_features, dtype=torch.bool)
        self.num_features = n_features
        self.selalpha = selalpha
        self.lam_Fac = lam_fac
        self.out_dir = out_dir
        self.n_classes = n_classes
        self.nKeep = nKeep
        self.args = self.extend_args(args, lookback, tol, epsilon)

    # Extended Proximal Operator for Feature Selection
    def extended_mask_max(self, greater_to_keep, thresh):
        prev = greater_to_keep[self.selected_features]
        greater_to_keep[self.selected_features] = torch.min(greater_to_keep)
        max_entry = torch.argmax(greater_to_keep)
        greater_to_keep[self.selected_features] = prev
        mask = torch.zeros_like(greater_to_keep)
        mask[max_entry] = 1
        final_mask = (greater_to_keep > thresh)
        final_mask = final_mask * mask
        allowed_to_keep = torch.logical_or(self.selected_features, final_mask)
        return allowed_to_keep

    def extend_args(self, args, lookback, tol, epsilon):
        for key, entry in safe_zip(["lookbehind", "tol",
                                    "lr_decay_factor", ], [lookback, tol, epsilon]):
            if entry is not None:
                setattr(args, key, entry)
        return args

    # Grouped L1 regularization
    # proximal operator for f(weight) = lam * \|weight\|_2
    # where the 2-norm is taken columnwise
    def group_threshold(self, weight, lam):
        norm = weight.norm(p=2, dim=0) + 1e-6
        #  print(ch.sum((norm > lam)))
        return (weight - lam * weight / norm) * self.extended_mask_max(norm, lam)

    # Elastic net regularization with group sparsity
    # proximal operator for f(x) = alpha * \|x\|_1 + beta * \|x\|_2^2
    # where the 2-norm is taken columnwise
    def group_threshold_with_shrinkage(self, x, alpha, beta):
        y = self.group_threshold(x, alpha)
        return y / (1 + beta)

    def threshold(self, weight_new, lr, lam):
        alpha = self.selalpha
        if alpha == 1:
            # Pure L1 regularization
            weight_new = self.group_threshold(weight_new, lr * lam * alpha)
        else:
            # Elastic net regularization
            weight_new = self.group_threshold_with_shrinkage(weight_new, lr * lam * alpha,
                                                             lr * lam * (1 - alpha))
        return weight_new

    # Train an elastic GLM with proximal SAGA
    # Since SAGA stores a scalar for each example-class pair, either pass
    # the number of examples and number of classes or calculate it with an
    # initial pass over the loaders
    def train_saga(self, linear, loader, lr, nepochs, lam, alpha, group=True, verbose=None,
                   state=None, table_device=None, n_ex=None, n_classes=None, tol=1e-4,
                   preprocess=None, lookbehind=None, family='multinomial', logger=None):
        if logger is None:
            logger = print
        with ch.no_grad():
            weight, bias = list(linear.parameters())
            if table_device is None:
                table_device = weight.device

            # get total number of examples and initialize scalars
            # for computing the gradients
            if n_ex is None:
                n_ex = sum(tensors[0].size(0) for tensors in loader)
            if n_classes is None:
                if family == 'multinomial':
                    n_classes = max(tensors[1].max().item() for tensors in loader) + 1
                elif family == 'gaussian':
                    for batch in loader:
                        y = batch[1]
                        break
                    n_classes = y.size(1)

            # Storage for scalar gradients and averages
            if state is None:
                a_table = ch.zeros(n_ex, n_classes).to(table_device)
                w_grad_avg = ch.zeros_like(weight).to(weight.device)
                b_grad_avg = ch.zeros_like(bias).to(weight.device)
            else:
                a_table = state["a_table"].to(table_device)
                w_grad_avg = state["w_grad_avg"].to(weight.device)
                b_grad_avg = state["b_grad_avg"].to(weight.device)

            obj_history = []
            obj_best = None
            nni = 0
            for t in range(nepochs):
                total_loss = 0
                for n_batch, batch in enumerate(loader):
                    if len(batch) == 3:
                        X, y, idx = batch
                        w = None
                    elif len(batch) == 4:
                        X, y, w, idx = batch
                    else:
                        raise ValueError(
                            f"Loader must return (data, target, index) or (data, target, index, weight) but instead got a tuple of length {len(batch)}")

                    if preprocess is not None:
                        device = get_device(preprocess)
                        with ch.no_grad():
                            X = preprocess(X.to(device))
                    X = X.to(weight.device)
                    out = linear(X)

                    # split gradient on only the cross entropy term
                    # for efficient storage of gradient information
                    if family == 'multinomial':
                        if w is None:
                            loss = F.cross_entropy(out, y.to(weight.device), reduction='mean')
                        else:
                            loss = F.cross_entropy(out, y.to(weight.device), reduction='none')
                            loss = (loss * w).mean()
                        I = ch.eye(linear.weight.size(0))
                        target = I[y].to(weight.device)  # change to OHE

                        # Calculate new scalar gradient
                        logits = F.softmax(linear(X))
                    elif family == 'gaussian':
                        if w is None:
                            loss = 0.5 * F.mse_loss(out, y.to(weight.device), reduction='mean')
                        else:
                            loss = 0.5 * F.mse_loss(out, y.to(weight.device), reduction='none')
                            loss = (loss * (w.unsqueeze(1))).mean()
                        target = y

                        # Calculate new scalar gradient
                        logits = linear(X)
                    else:
                        raise ValueError(f"Unknown family: {family}")
                    total_loss += loss.item() * X.size(0)

                    # BS x NUM_CLASSES
                    a = logits - target
                    if w is not None:
                        a = a * w.unsqueeze(1)
                    a_prev = a_table[idx].to(weight.device)

                    # weight parameter
                    w_grad = (a.unsqueeze(2) * X.unsqueeze(1)).mean(0)
                    w_grad_prev = (a_prev.unsqueeze(2) * X.unsqueeze(1)).mean(0)
                    w_saga = w_grad - w_grad_prev + w_grad_avg
                    weight_new = weight - lr * w_saga
                    weight_new = self.threshold(weight_new, lr, lam)
                    # bias parameter
                    b_grad = a.mean(0)
                    b_grad_prev = a_prev.mean(0)
                    b_saga = b_grad - b_grad_prev + b_grad_avg
                    bias_new = bias - lr * b_saga

                    # update table and averages
                    a_table[idx] = a.to(table_device)
                    w_grad_avg.add_((w_grad - w_grad_prev) * X.size(0) / n_ex)
                    b_grad_avg.add_((b_grad - b_grad_prev) * X.size(0) / n_ex)

                    if lookbehind is None:
                        dw = (weight_new - weight).norm(p=2)
                        db = (bias_new - bias).norm(p=2)
                        criteria = ch.sqrt(dw ** 2 + db ** 2)

                        if criteria.item() <= tol:
                            return {
                                "a_table": a_table.cpu(),
                                "w_grad_avg": w_grad_avg.cpu(),
                                "b_grad_avg": b_grad_avg.cpu()
                            }

                    weight.data = weight_new
                    bias.data = bias_new

                saga_obj = total_loss / n_ex + lam * alpha * weight.norm(p=1) + 0.5 * lam * (1 - alpha) * (
                        weight ** 2).sum()

                # save amount of improvement
                obj_history.append(saga_obj.item())
                if obj_best is None or saga_obj.item() + tol < obj_best:
                    obj_best = saga_obj.item()
                    nni = 0
                else:
                    nni += 1

                # Stop if no progress for lookbehind iterationsd:])
                criteria = lookbehind is not None and (nni >= lookbehind)

                nnz = (weight.abs() > 1e-5).sum().item()
                total = weight.numel()
                if verbose and (t % verbose) == 0:
                    if lookbehind is None:
                        logger(
                            f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) criteria {criteria:.4f} {dw} {db}")
                    else:
                        logger(
                            f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) obj_best {obj_best}")

                if lookbehind is not None and criteria:
                    logger(
                        f"obj {saga_obj.item()} weight nnz {nnz}/{total} ({nnz / total:.4f}) obj_best {obj_best} [early stop at {t}]")
                    return {
                        "a_table": a_table.cpu(),
                        "w_grad_avg": w_grad_avg.cpu(),
                        "b_grad_avg": b_grad_avg.cpu()
                    }

            logger(f"did not converge at {nepochs} iterations (criteria {criteria})")
            return {
                "a_table": a_table.cpu(),
                "w_grad_avg": w_grad_avg.cpu(),
                "b_grad_avg": b_grad_avg.cpu()
            }

    def glm_saga(self, linear, loader, max_lr, nepochs, alpha, dropout, tries,
                 table_device=None, preprocess=None, group=False,
                 verbose=None, state=None, n_ex=None, n_classes=None,
                 tol=1e-4, epsilon=0.001, k=100, checkpoint=None,
                 do_zero=True, lr_decay_factor=1, metadata=None,
                 val_loader=None, test_loader=None, lookbehind=None,
                 family='multinomial', encoder=None, tot_tries=1):
        if encoder is not None:
            warnings.warn("encoder argument is deprecated; please use preprocess instead", DeprecationWarning)
            preprocess = encoder
        device = get_device(linear)
        checkpoint = self.out_dir
        if preprocess is not None and (device != get_device(preprocess)):
            raise ValueError(
                f"Linear and preprocess must be on same device (got {get_device(linear)} and {get_device(preprocess)})")

        if metadata is not None:
            if n_ex is None:
                n_ex = metadata['X']['num_examples']
            if n_classes is None:
                n_classes = metadata['y']['num_classes']
        lam_fac = (1 + (tries - 1) / tot_tries)
        print("Using lam_fac ", lam_fac)
        max_lam = maximum_reg_loader(loader, group=group, preprocess=preprocess, metadata=metadata,
                                     family=family) / max(
            0.001, alpha) * lam_fac
        group_lam = maximum_reg_loader(loader, group=True, preprocess=preprocess, metadata=metadata,
                                       family=family) / max(
            0.001, alpha) * lam_fac
        min_lam = epsilon * max_lam
        group_min_lam = epsilon * group_lam
        # logspace is base 10 but log is base e so use log10
        lams = ch.logspace(math.log10(max_lam), math.log10(min_lam), k)
        lrs = ch.logspace(math.log10(max_lr), math.log10(max_lr / lr_decay_factor), k)
        found = False
        if do_zero:
            lams = ch.cat([lams, lams.new_zeros(1)])
            lrs = ch.cat([lrs, lrs.new_ones(1) * lrs[-1]])

        path = []
        best_val_loss = float('inf')

        if checkpoint is not None:
            os.makedirs(checkpoint, exist_ok=True)

            file_handler = logging.FileHandler(filename=os.path.join(checkpoint, 'output.log'))
            stdout_handler = logging.StreamHandler(sys.stdout)
            handlers = [file_handler, stdout_handler]

            logging.basicConfig(
                level=logging.DEBUG,
                format='[%(asctime)s] %(levelname)s - %(message)s',
                handlers=handlers
            )
            logger = logging.getLogger('glm_saga').info
        else:
            logger = print
        while self.selected_features.sum() < self.nKeep:  # TODO checkout this change, one iteration per feature
            n_feature_to_keep = self.selected_features.sum()
            for i, (lam, lr) in enumerate(zip(lams, lrs)):
                lam = lam * self.lam_Fac
                start_time = time.time()
                self.selected_features = self.selected_features.to(device)
                state = self.train_saga(linear, loader, lr, nepochs, lam, alpha,
                                        table_device=table_device, preprocess=preprocess, group=group, verbose=verbose,
                                        state=state, n_ex=n_ex, n_classes=n_classes, tol=tol, lookbehind=lookbehind,
                                        family=family, logger=logger)

                with ch.no_grad():
                    loss, acc = elastic_loss_and_acc_loader(linear, loader, lam, alpha, preprocess=preprocess,
                                                            family=family)
                    loss, acc = loss.item(), acc.item()

                    loss_val, acc_val = -1, -1
                    if val_loader:
                        loss_val, acc_val = elastic_loss_and_acc_loader(linear, val_loader, lam, alpha,
                                                                        preprocess=preprocess,
                                                                        family=family)
                        loss_val, acc_val = loss_val.item(), acc_val.item()

                    loss_test, acc_test = -1, -1
                    if test_loader:
                        loss_test, acc_test = elastic_loss_and_acc_loader(linear, test_loader, lam, alpha,
                                                                          preprocess=preprocess, family=family)
                        loss_test, acc_test = loss_test.item(), acc_test.item()

                    params = {
                        "lam": lam,
                        "lr": lr,
                        "alpha": alpha,
                        "time": time.time() - start_time,
                        "loss": loss,
                        "metrics": {
                            "loss_tr": loss,
                            "acc_tr": acc,
                            "loss_val": loss_val,
                            "acc_val": acc_val,
                            "loss_test": loss_test,
                            "acc_test": acc_test,
                        },
                        "weight": linear.weight.detach().cpu().clone(),
                        "bias": linear.bias.detach().cpu().clone()

                    }
                    path.append(params)
                    if loss_val is not None and loss_val < best_val_loss:
                        best_val_loss = loss_val
                        best_params = params
                        found = True
                    nnz = (linear.weight.abs() > 1e-5).sum().item()
                    total = linear.weight.numel()
                    if family == 'multinomial':
                        logger(
                            f"{n_feature_to_keep} Feature ({i}) lambda {lam:.4f}, loss {loss:.4f}, acc {acc:.4f} [val acc {acc_val:.4f}] [test acc {acc_test:.4f}], sparsity {nnz / total} [{nnz}/{total}], time {time.time() - start_time}, lr {lr:.4f}")
                    elif family == 'gaussian':
                        logger(
                            f"({i}) lambda {lam:.4f}, loss {loss:.4f} [val loss {loss_val:.4f}] [test loss {loss_test:.4f}], sparsity {nnz / total} [{nnz}/{total}], time {time.time() - start_time}, lr {lr:.4f}")

                if self.check_new_feature(linear.weight):  # TODO checkout this change, canceling if new feature is used
                    if checkpoint is not None:
                        ch.save(params, os.path.join(checkpoint, f"params{n_feature_to_keep}.pth"))
                    break
        if found:
            return {
                'path': path,
                'best': best_params,
                'state': state
            }
        else:
            return False

    def check_new_feature(self, weight):
        # TODO checkout this change, checking if new feature is used
        copied_weight = torch.tensor(weight.cpu())
        used_features = torch.unique(
            torch.nonzero(copied_weight)[:, 1])
        if len(used_features) > 0:
            new_set = set(used_features.tolist())
            old_set = set(torch.nonzero(self.selected_features)[:, 0].tolist())
            diff = new_set - old_set
            if len(diff) > 0:
                self.selected_features[used_features] = True
                return True
        return False

    def fit(self, feature_loaders, metadata, device):
        # TODO checkout this change, glm saga code slightly adapted to return to_drop
        print("Initializing linear model...")
        linear = nn.Linear(self.num_features, self.n_classes).to(device)
        for p in [linear.weight, linear.bias]:
            p.data.zero_()

        print("Preparing normalization preprocess and indexed dataloader")
        preprocess = NormalizedRepresentation(feature_loaders['train'],
                                              metadata=metadata,
                                              device=linear.weight.device)

        print("Calculating the regularization path")
        mpl_logger = logging.getLogger("matplotlib")
        mpl_logger.setLevel(logging.WARNING)
        selected_features = self.glm_saga(linear,
                                          feature_loaders['train'],
                                          self.args.lr,
                                          self.args.max_epochs,
                                          self.selalpha, 0, 1,
                                          val_loader=feature_loaders['val'],
                                          test_loader=feature_loaders['test'],
                                          n_classes=self.n_classes,
                                          verbose=self.args.verbose,
                                          tol=self.args.tol,
                                          lookbehind=self.args.lookbehind,
                                          lr_decay_factor=self.args.lr_decay_factor,
                                          group=True,
                                          epsilon=self.args.lam_factor,
                                          metadata=metadata,
                                          preprocess=preprocess, tot_tries=1)
        to_drop = np.where(self.selected_features.cpu().numpy() == 0)[0]
        test_acc = selected_features["path"][-1]["metrics"]["acc_test"]
        torch.set_grad_enabled(True)
        return to_drop, test_acc


class NormalizedRepresentation(ch.nn.Module):
    def __init__(self, loader, metadata, device='cuda', tol=1e-5):
        super(NormalizedRepresentation, self).__init__()

        assert metadata is not None
        self.device = device
        self.mu = metadata['X']['mean']
        self.sigma = ch.clamp(metadata['X']['std'], tol)

    def forward(self, X):
        return (X - self.mu.to(self.device)) / self.sigma.to(self.device)