File size: 4,963 Bytes
9b896f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pathlib
from typing import Callable, Optional, Any, Tuple

import numpy as np
import pandas as pd
from PIL import Image
from torchvision.datasets import VisionDataset
from torchvision.datasets.utils import download_and_extract_archive, download_url


class StanfordCarsClass(VisionDataset):
    """`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset

    The Cars dataset contains 16,185 images of 196 classes of cars. The data is
    split into 8,144 training images and 8,041 testing images, where each class
    has been split roughly in a 50-50 split

    .. note::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.

    Args:
        root (string): Root directory of dataset
        split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again."""
    root = pathlib.Path.home() / "tmp" / "Datasets" / "StanfordCars"
    def __init__(
            self,
            train: bool = True,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = True,
    ) -> None:

        try:
            import scipy.io as sio
        except ImportError:
            raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")

        super().__init__(self.root, transform=transform, target_transform=target_transform)

        self.train = train
        self._base_folder = pathlib.Path(self.root) / "stanford_cars"
        devkit = self._base_folder / "devkit"

        if train:
            self._annotations_mat_path = devkit / "cars_train_annos.mat"
            self._images_base_path = self._base_folder / "cars_train"
        else:
            self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat"
            self._images_base_path = self._base_folder / "cars_test"

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it")

        self.samples = [
            (
                str(self._images_base_path / annotation["fname"]),
                annotation["class"] - 1,  # Original target mapping  starts from 1, hence -1
            )
            for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"]
        ]
        self.targets = np.array([x[1] for x in self.samples])
        self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist()
        self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)}

    def __len__(self) -> int:
        return len(self.samples)

    def __getitem__(self, idx: int) -> Tuple[Any, Any]:
        """Returns pil_image and class_id for given index"""
        image_path, target = self.samples[idx]
        pil_image = Image.open(image_path).convert("RGB")

        if self.transform is not None:
            pil_image = self.transform(pil_image)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return pil_image, target

    def download(self) -> None:
        if self._check_exists():
            return

        download_and_extract_archive(
            url="https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz",
            download_root=str(self._base_folder),
            md5="c3b158d763b6e2245038c8ad08e45376",
        )
        if self.train:
            download_and_extract_archive(
                url="https://ai.stanford.edu/~jkrause/car196/cars_train.tgz",
                download_root=str(self._base_folder),
                md5="065e5b463ae28d29e77c1b4b166cfe61",
            )
        else:
            download_and_extract_archive(
                url="https://ai.stanford.edu/~jkrause/car196/cars_test.tgz",
                download_root=str(self._base_folder),
                md5="4ce7ebf6a94d07f1952d94dd34c4d501",
            )
            download_url(
                url="https://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat",
                root=str(self._base_folder),
                md5="b0a2b23655a3edd16d84508592a98d10",
            )

    def _check_exists(self) -> bool:
        if not (self._base_folder / "devkit").is_dir():
            return False

        return self._annotations_mat_path.exists() and self._images_base_path.is_dir()