|
import torch |
|
|
|
from configs.optim_params import EvaluatedDict |
|
|
|
dataset_constants = {"CUB2011":{"num_classes":200}, |
|
"TravelingBirds":{"num_classes":200}, |
|
"ImageNet":{"num_classes":1000}, |
|
"StanfordCars":{"num_classes":196}, |
|
"FGVCAircraft": {"num_classes":100}} |
|
|
|
normalize_params = {"CUB2011":{"mean": torch.tensor([0.4853, 0.4964, 0.4295]),"std":torch.tensor([0.2300, 0.2258, 0.2625])}, |
|
"TravelingBirds":{"mean": torch.tensor([0.4584, 0.4369, 0.3957]),"std":torch.tensor([0.2610, 0.2569, 0.2722])}, |
|
"ImageNet":{'mean': torch.tensor([0.485, 0.456, 0.406]),'std': torch.tensor([0.229, 0.224, 0.225])} , |
|
"StanfordCars":{'mean': torch.tensor([0.4593, 0.4466, 0.4453]),'std': torch.tensor([0.2920, 0.2910, 0.2988])} , |
|
"FGVCAircraft":{'mean': torch.tensor([0.4827, 0.5130, 0.5352]), |
|
'std': torch.tensor([0.2236, 0.2170, 0.2478]),} |
|
} |
|
|
|
|
|
dense_batch_size = EvaluatedDict({False: 16,True: 1024,}, lambda x: x == "ImageNet") |
|
|
|
ft_batch_size = EvaluatedDict({False: 16,True: 1024,}, lambda x: x == "ImageNet") |