Spaces:
Sleeping
Sleeping
import os | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from tqdm import trange | |
from FeatureDiversityLoss import FeatureDiversityLoss | |
from architectures.model_mapping import get_model | |
from configs.architecture_params import architecture_params | |
from configs.dataset_params import dataset_constants | |
from evaluation.qsenn_metrics import eval_model_on_all_qsenn_metrics | |
from finetuning.map_function import finetune | |
from get_data import get_data | |
from saving.logging import Tee | |
from saving.utils import json_save | |
from train import train, test | |
from training.optim import get_optimizer, get_scheduler_for_model | |
def main(dataset, arch,seed=None, model_type="qsenn", do_dense=True,crop = True, n_features = 50, n_per_class=5, img_size=448, reduced_strides=False): | |
# create random seed, if seed is None | |
if seed is None: | |
seed = np.random.randint(0, 1000000) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
dataset_key = dataset | |
if crop: | |
assert dataset in ["CUB2011","TravelingBirds"] | |
dataset_key += "_crop" | |
log_dir = Path.home()/f"tmp/{arch}/{dataset_key}/{seed}/" | |
log_dir.mkdir(parents=True, exist_ok=True) | |
tee = Tee(log_dir / "log.txt") # save log to file | |
n_classes = dataset_constants[dataset]["num_classes"] | |
train_loader, test_loader = get_data(dataset, crop=crop, img_size=img_size) | |
model = get_model(arch, n_classes, reduced_strides) | |
fdl = FeatureDiversityLoss(architecture_params[arch]["beta"], model.linear) | |
OptimizationSchedule = get_scheduler_for_model(model_type, dataset) | |
optimizer, schedule, dense_epochs =get_optimizer(model, OptimizationSchedule) | |
if not os.path.exists(log_dir / "Trained_DenseModel.pth"): | |
if do_dense: | |
for epoch in trange(dense_epochs): | |
model = train(model, train_loader, optimizer, fdl, epoch) | |
schedule.step() | |
if epoch % 5 == 0: | |
test(model, test_loader,epoch) | |
else: | |
print("Using pretrained model, only makes sense for ImageNet") | |
torch.save(model.state_dict(), os.path.join(log_dir, f"Trained_DenseModel.pth")) | |
else: | |
model.load_state_dict(torch.load(log_dir / "Trained_DenseModel.pth")) | |
if not os.path.exists( log_dir/f"Results_DenseModel.json"): | |
metrics_dense = eval_model_on_all_qsenn_metrics(model, test_loader, train_loader) | |
json_save(os.path.join(log_dir, f"Results_DenseModel.json"), metrics_dense) | |
final_model = finetune(model_type, model, train_loader, test_loader, log_dir, n_classes, seed, architecture_params[arch]["beta"], OptimizationSchedule, n_per_class, n_features) | |
torch.save(final_model.state_dict(), os.path.join(log_dir,f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth")) | |
metrics_finetuned = eval_model_on_all_qsenn_metrics(final_model, test_loader, train_loader) | |
json_save(os.path.join(log_dir, f"Results_{model_type}_{n_features}_{n_per_class}_FinetunedModel.json"), metrics_finetuned) | |
print("Done") | |
pass | |
if __name__ == '__main__': | |
parser = ArgumentParser() | |
parser.add_argument('--dataset', default="CUB2011", type=str, help='dataset name', choices=["CUB2011", "ImageNet", "TravelingBirds", "StanfordCars"]) | |
parser.add_argument('--arch', default="resnet50", type=str, help='Backbone Feature Extractor', choices=["resnet50", "resnet18"]) | |
parser.add_argument('--model_type', default="qsenn", type=str, help='Type of Model', choices=["qsenn", "sldd"]) | |
parser.add_argument('--seed', default=None, type=int, help='seed, used for naming the folder and random processes. Could be useful to set to have multiple finetune runs (e.g. Q-SENN and SLDD) on the same dense model') # 769567, 552629 | |
parser.add_argument('--do_dense', default=True, type=bool, help='whether to train dense model. Should be true for all datasets except (maybe) ImageNet') | |
parser.add_argument('--cropGT', default=False, type=bool, | |
help='Whether to crop CUB/TravelingBirds based on GT Boundaries') | |
parser.add_argument('--n_features', default=50, type=int, help='How many features to select') #769567 | |
parser.add_argument('--n_per_class', default=5, type=int, help='How many features to assign to each class') | |
parser.add_argument('--img_size', default=448, type=int, help='Image size') | |
parser.add_argument('--reduced_strides', default=False, type=bool, help='Whether to use reduced strides for resnets') | |
args = parser.parse_args() | |
main(args.dataset, args.arch, args.seed, args.model_type, args.do_dense,args.cropGT, args.n_features, args.n_per_class, args.img_size, args.reduced_strides) | |