Haaribo's picture
Update app.py
09b357e verified
raw
history blame
6.4 kB
import gradio as gr
from load_model import extract_sel_mean_std_bias_assignemnt
from pathlib import Path
from architectures.model_mapping import get_model
from configs.dataset_params import dataset_constants
import torch
import torchvision.transforms as transforms
import pandas as pd
import cv2
import numpy as np
from PIL import Image
from get_data import get_augmentation
from configs.dataset_params import normalize_params
def overlapping_features_on_input(model,output, feature_maps, input, target):
W=model.linear.layer.weight
output=output.detach().cpu().numpy()
feature_maps=feature_maps.detach().cpu().numpy().squeeze()
if target !=None:
label=target
else:
label=np.argmax(output)+1
Interpretable_Selection= W[label,:]
print("W",Interpretable_Selection)
input_np=np.array(input)
h,w= input.shape[:2]
print("h,w:",h,w)
Interpretable_Features=[]
Feature_image_list=[]
for S in range(len(Interpretable_Selection)):
if Interpretable_Selection[S] > 0:
Interpretable_Features.append(feature_maps[S])
Feature_image=cv2.resize(feature_maps[S],(w,h))
Feature_image=((Feature_image-np.min(Feature_image))/(np.max(Feature_image)-np.min(Feature_image)))*255
Feature_image=Feature_image.astype(np.uint8)
Feature_image=cv2.applyColorMap(Feature_image,cv2.COLORMAP_JET)
Feature_image=0.3*Feature_image+0.7*input_np
Feature_image=np.clip(Feature_image, 0, 255).astype(np.uint8)
Feature_image_list.append(Feature_image)
#path_to_featureimage=f"/home/qixuan/tmp/FeatureImage/FI{S}.jpg"
#cv2.imwrite(path_to_featureimage,Feature_image)
print("len of Features:",len(Interpretable_Features))
return Feature_image_list
def genreate_intepriable_output(input,dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None):
n_classes = dataset_constants[dataset]["num_classes"]
model = get_model(arch, n_classes, reduced_strides)
tr=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if folder is None:
folder = Path.home() / f"tmp/{arch}/{dataset}/{seed}/"
state_dict = torch.load(folder / f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth")
selection= torch.load(folder / f"SlDD_Selection_50.pt")
state_dict['linear.selection']=selection
feature_sel, sparse_layer, current_mean, current_std, bias_sparse = extract_sel_mean_std_bias_assignemnt(state_dict)
model.set_model_sldd(feature_sel, sparse_layer, current_mean, current_std, bias_sparse)
model.load_state_dict(state_dict)
input=Image.fromarray(input)
input = tr(input)
input= input.unsqueeze(0)
input= input.to(device)
model = model.to(device)
model.eval()
with torch.no_grad():
output, feature_maps, final_features = model(input, with_feature_maps=True, with_final_features=True)
print("final features:",final_features)
output=output.detach().cpu().numpy()
output= np.argmax(output)+1
print("outputclass:",output)
data_dir=Path.home()/"tmp/Datasets/CUB200/CUB_200_2011/"
labels = pd.read_csv(data_dir/"image_class_labels.txt", sep=' ', names=['img_id', 'target'])
namelist=pd.read_csv(data_dir/"images.txt",sep=' ',names=['img_id','file_name'])
classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name'])
options_output=labels[labels['target']==output]
options_output=options_output.sample(1)
others=labels[labels['target']!=output]
options_others=others.sample(3)
options = pd.concat([options_others, options_output], ignore_index=True)
shuffled_options = options.sample(frac=1).reset_index(drop=True)
print("shuffled:",shuffled_options)
op=[]
for i in shuffled_options['img_id']:
filenames=namelist.loc[namelist['img_id']==i,'file_name'].values[0]
targets=shuffled_options.loc[shuffled_options['img_id']==i,'target'].values[0]
classes=classlist.loc[classlist['cl_id']==targets, 'class_name'].values[0]
op_img=cv2.imread(data_dir/f"images/{filenames}")
op_imag=Image.fromarray(op_img)
op_images=TR(op_imag)
op_images=op_images.unsqueeze(0)
op_images=op_images.to(device)
OP, feature_maps_op =model(op_images,with_feature_maps=True,with_final_features=False)
opt= overlapping_features_on_input(model,OP, feature_maps_op,op_img,targets)
op+=opt
return op
def post_next_image(op):
if len(op)<=1:
return [],None, "all done, thank you!"
else:
op=op[1:len(op)]
return op,op[0], "Is this feature also in your input?"
def get_features_on_interface(input):
op=genreate_intepriable_output(input,dataset="CUB2011",
arch="resnet50",seed=123456,
model_type="qsenn", n_features = 50,n_per_class=5,
img_size=448, reduced_strides=False, folder = None)
return op, op[0],"Is this feature also in your input?",gr.update(interactive=False)
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>Interiable Bird Classification</h1>")
image_input=gr.Image()
image_output=gr.Image()
text_output=gr.Markdown()
but_generate=gr.Button("Get some interpriable Features")
but_feedback_y=gr.Button("Yes")
but_feedback_n=gr.Button("No")
image_list = gr.State([])
but_generate.click(fn=get_features_on_interface, inputs=image_input, outputs=[image_list,image_output,text_output,but_generate])
but_feedback_y.click(fn=post_next_image, inputs=image_list, outputs=[image_list,image_output,text_output])
but_feedback_n.click(fn=post_next_image, inputs=image_list, outputs=[image_list,image_output,text_output])
demo.launch()