from datasets import load_dataset from torch_geometric.transforms import ToUndirected import torch from torch.nn import Linear from torch_geometric.nn import HGTConv, MLP import pandas as pd class ProtHGT(torch.nn.Module): def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout): super().__init__() self.lin_dict = torch.nn.ModuleDict({ node_type: Linear(-1, hidden_channels) for node_type in data.node_types }) self.convs = torch.nn.ModuleList() for _ in range(num_layers): conv = HGTConv(hidden_channels, hidden_channels, data.metadata(), num_heads, group='sum') self.convs.append(conv) # self.left_linear = Linear(hidden_channels, hidden_channels) # self.right_linear = Linear(hidden_channels, hidden_channels) # self.sqrt_hd = hidden_channels**1/2 # self.mlp =MLP([2*hidden_channels, 128, 1], dropout=0.5, norm=None) self.mlp = MLP(mlp_hidden_layers , dropout=mlp_dropout, norm=None) def generate_embeddings(self, x_dict, edge_index_dict): # Generate updated embeddings through the GNN layers x_dict = { node_type: self.lin_dict[node_type](x).relu_() for node_type, x in x_dict.items() } for conv in self.convs: x_dict = conv(x_dict, edge_index_dict) return x_dict def forward(self, x_dict, edge_index_dict, tr_edge_label_index, target_type, test=False): # Get updated embeddings x_dict = self.generate_embeddings(x_dict, edge_index_dict) # Make predictions row, col = tr_edge_label_index z = torch.cat([x_dict["Protein"][row], x_dict[target_type][col]], dim=-1) return self.mlp(z).view(-1), x_dict def _load_data(protein_id, go_category=None, heterodata_path=''): heterodata = load_dataset(heterodata_path) # Remove unnecessary edge types in one go edge_types_to_remove = [ ('Protein', 'protein_function', 'GO_term_F'), ('Protein', 'protein_function', 'GO_term_P'), ('Protein', 'protein_function', 'GO_term_C'), ('GO_term_F', 'rev_protein_function', 'Protein'), ('GO_term_P', 'rev_protein_function', 'Protein'), ('GO_term_C', 'rev_protein_function', 'Protein') ] for edge_type in edge_types_to_remove: if edge_type in heterodata: del heterodata[edge_type] # Remove reverse edges heterodata = {k: v for k, v in heterodata.items() if not isinstance(k, tuple) or 'rev' not in k[1]} protein_index = heterodata['Protein']['id_mapping'][protein_id] # Create edge indices more efficiently categories = [go_category] if go_category else ['GO_term_F', 'GO_term_P', 'GO_term_C'] for category in categories: pairs = [(protein_index, i) for i in range(len(heterodata[category]))] heterodata['Protein', 'protein_function', category] = {'edge_index': pairs} return ToUndirected(merge=False)(heterodata) def get_available_proteins(protein_list_file='data/available_proteins.txt'): with open(protein_list_file, 'r') as file: return [line.strip() for line in file.readlines()] def _generate_predictions(heterodata, model_path, model_config, target_type): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = ProtHGT(heterodata, model_config['hidden_channels'], model_config['num_heads'], model_config['num_layers'], model_config['mlp_hidden_layers'], model_config['mlp_dropout']) print('Loading model from', model_path) model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() heterodata.to(device) with torch.no_grad(): predictions, _ = model(heterodata.x_dict, heterodata.edge_index_dict, heterodata[("Protein", "protein_function", target_type)].edge_label_index, target_type) return predictions def _create_prediction_df(predictions, heterodata, protein_id, go_category): prediction_df = pd.DataFrame({ 'Protein': protein_id, 'GO_category': go_category, 'GO_term': heterodata[go_category]['id_mapping'].keys(), 'Probability': predictions.tolist() }) prediction_df.sort_values(by='Probability', ascending=False, inplace=True) prediction_df.reset_index(drop=True, inplace=True) return prediction_df def generate_prediction_df(protein_id, heterodata_path, model_path, model_config, go_category=None): heterodata = _load_data(protein_id, go_category, heterodata_path) if go_category: predictions = _generate_predictions(heterodata, model_path, model_config, go_category) prediction_df = _create_prediction_df(predictions, heterodata, protein_id, go_category) return prediction_df else: all_predictions = [] for go_category in ['GO_term_F', 'GO_term_P', 'GO_term_C']: predictions = _generate_predictions(heterodata, model_path, model_config, go_category) category_df = _create_prediction_df(predictions, heterodata, protein_id, go_category) all_predictions.append(category_df) return pd.concat(all_predictions, ignore_index=True)