PROBE / app.py
mgyigit's picture
Update app.py
1fee397 verified
raw
history blame
10.6 kB
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
):
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
for benchmark_type in results:
if benchmark_type == 'similarity':
save_similarity_output(results['similarity'], representation_name)
elif benchmark_type == 'function':
save_function_output(results['function'], representation_name)
elif benchmark_type == 'family':
save_family_output(results['family'], representation_name)
elif benchmark_type == "affinity":
save_affinity_output(results['affinity', representation_name])
# Function to update leaderboard dynamically based on user selection
def update_leaderboard(selected_methods, selected_metrics):
return get_baseline_df(selected_methods, selected_metrics)
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table jmmmu bench
with gr.TabItem("πŸ… PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
metrics_with_method = metric_names.copy()
metric_names.remove('method_name') # Remove method_name from the metric options
# Leaderboard section with method and metric selectors
with gr.Row():
# Add method and metric selectors for leaderboard
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names, label="Select method_names for Leaderboard", value=method_names, interactive=True
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
)
# Display the filtered leaderboard
baseline_value = get_baseline_df(method_names, metric_names)
baseline_header = ["method_name"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# Update leaderboard when method/metric selection changes
leaderboard_method_selector.change(
update_leaderboard,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
leaderboard_metric_selector.change(
update_leaderboard,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
# Dropdown for benchmark type
benchmark_types = TASK_INFO + ['flexible']
benchmark_type_selector = gr.Dropdown(choices=benchmark_types, label="Select Benchmark Type for Visualization", value="flexible")
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
# CheckboxGroup for methods
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
# Button to draw the plot for the selected benchmark
plot_button = gr.Button("Plot")
plot_output = gr.Image(label="Plot")
# Update metric selectors when benchmark type is chosen
def update_metric_choices(benchmark_type):
if benchmark_type == 'flexible' or benchmark_type == 'similarity':
# Show x and y metric selectors for similarity and flexible
metric_names = benchmark_specific_metrics.get(benchmark_type, [])
return (
gr.update(choices=metric_names, value=metric_names[0], visible=True),
gr.update(choices=metric_names, value=metric_names[1], visible=True),
gr.update(visible=False) # Hide single metric selector
)
elif benchmark_type in benchmark_specific_metrics:
# Show single metric selector for other benchmark types
metrics = benchmark_specific_metrics[benchmark_type]
return (
gr.update(visible=False), # Hide x-axis metric selector
gr.update(visible=False), # Hide y-axis metric selector
gr.update(choices=metrics, value=metrics[0], visible=True)
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Dropdown for benchmark type
benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type")
# Update selectors when benchmark type changes
benchmark_type_selector.change(
update_metric_choices,
inputs=[benchmark_type_selector],
outputs=[x_metric_selector, y_metric_selector, single_metric_selector]
)
# Generate the plot based on user input
def benchmark_plot(benchmark_type, method_names, x_metric, y_metric, single_metric):
# Implement plot generation logic based on selected benchmark type and metrics
pass
plot_button.click(
benchmark_plot,
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, single_metric_selector],
outputs=plot_output
)
with gr.TabItem("πŸ“ About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name",
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name",
)
benchmark_type = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Type",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Select Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Select Function Prediction Aspect",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Select Family Prediction Dataset",
interactive=True,
)
function_prediction_dataset = "All_Data_Sets"
with gr.Column():
human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
],
)
def refresh_data():
value = get_baseline_df(method_names, metric_names)
return value
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()