osbm commited on
Commit
e418463
·
1 Parent(s): 5b1e10a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -93,13 +93,14 @@ with st.sidebar:
93
  st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
94
  st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
95
 
96
- st.write("""
 
97
  ### Model Variations
98
  - **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
99
  - **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
100
  - **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
101
 
102
- """)
103
 
104
  with st.form("model_selection_from"):
105
  model_name = st.radio(
 
93
  st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
94
  st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
95
 
96
+ with st.expander("Expand to display information about models"):
97
+ st.write("""
98
  ### Model Variations
99
  - **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
100
  - **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
101
  - **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
102
 
103
+ """)
104
 
105
  with st.form("model_selection_from"):
106
  model_name = st.radio(