Spaces:
Running
Running
Update new_dataloader.py
Browse files- new_dataloader.py +63 -117
new_dataloader.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
import pickle
|
| 2 |
-
import os.path as osp
|
| 3 |
-
import re
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
import numpy as np
|
| 7 |
-
|
| 8 |
from rdkit import Chem
|
| 9 |
-
from rdkit import RDLogger
|
| 10 |
from torch_geometric.data import (Data, InMemoryDataset)
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
RDLogger.DisableLog('rdApp.*')
|
| 13 |
class DruggenDataset(InMemoryDataset):
|
| 14 |
|
|
@@ -18,64 +18,46 @@ class DruggenDataset(InMemoryDataset):
|
|
| 18 |
self.raw_files = raw_files
|
| 19 |
self.max_atom = max_atom
|
| 20 |
self.features = features
|
| 21 |
-
|
| 22 |
super().__init__(root, transform, pre_transform, pre_filter)
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
@property
|
| 27 |
def raw_file_names(self):
|
| 28 |
return self.raw_files
|
| 29 |
|
| 30 |
@property
|
| 31 |
def processed_file_names(self):
|
| 32 |
-
'''
|
| 33 |
-
Return the processed file names. If these names are not present, they will be automatically processed using process function of this class.
|
| 34 |
-
'''
|
| 35 |
return self.dataset_file
|
| 36 |
|
| 37 |
def _generate_encoders_decoders(self, data):
|
| 38 |
-
|
| 39 |
-
Generates the encoders and decoders for the atoms and bonds.
|
| 40 |
-
"""
|
| 41 |
self.data = data
|
| 42 |
print('Creating atoms encoder and decoder..')
|
| 43 |
-
|
| 44 |
-
atom_labels = set()
|
| 45 |
-
# bond_labels = set()
|
| 46 |
-
self.max_atom_size_in_data = 0
|
| 47 |
-
|
| 48 |
-
for smile in data:
|
| 49 |
-
mol = Chem.MolFromSmiles(smile)
|
| 50 |
-
atom_labels.update([atom.GetAtomicNum() for atom in mol.GetAtoms()])
|
| 51 |
-
# bond_labels.update([bond.GetBondType() for bond in mol.GetBonds()])
|
| 52 |
-
self.max_atom_size_in_data = max(self.max_atom_size_in_data, mol.GetNumAtoms())
|
| 53 |
-
atom_labels.update([0]) # add PAD symbol (for unknown atoms)
|
| 54 |
-
atom_labels = sorted(atom_labels) # turn set into list and sort it
|
| 55 |
-
|
| 56 |
-
# atom_labels = sorted(set([atom.GetAtomicNum() for mol in self.data for atom in mol.GetAtoms()] + [0]))
|
| 57 |
self.atom_encoder_m = {l: i for i, l in enumerate(atom_labels)}
|
| 58 |
self.atom_decoder_m = {i: l for i, l in enumerate(atom_labels)}
|
| 59 |
self.atom_num_types = len(atom_labels)
|
| 60 |
-
print(
|
|
|
|
| 61 |
print("atom_labels", atom_labels)
|
| 62 |
print('Creating bonds encoder and decoder..')
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
bond_labels = [
|
| 67 |
-
Chem.rdchem.BondType.ZERO,
|
| 68 |
-
Chem.rdchem.BondType.SINGLE,
|
| 69 |
-
Chem.rdchem.BondType.DOUBLE,
|
| 70 |
-
Chem.rdchem.BondType.TRIPLE,
|
| 71 |
-
Chem.rdchem.BondType.AROMATIC,
|
| 72 |
-
]
|
| 73 |
-
|
| 74 |
print("bond labels", bond_labels)
|
| 75 |
self.bond_encoder_m = {l: i for i, l in enumerate(bond_labels)}
|
| 76 |
self.bond_decoder_m = {i: l for i, l in enumerate(bond_labels)}
|
| 77 |
self.bond_num_types = len(bond_labels)
|
| 78 |
-
print(
|
|
|
|
| 79 |
#dataset_names = str(self.dataset_name)
|
| 80 |
with open("DrugGEN/data/encoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_encoders:
|
| 81 |
pickle.dump(self.atom_encoder_m,atom_encoders)
|
|
@@ -94,19 +76,8 @@ class DruggenDataset(InMemoryDataset):
|
|
| 94 |
|
| 95 |
|
| 96 |
|
| 97 |
-
def
|
| 98 |
-
"""
|
| 99 |
-
Generates the adjacency matrix for a molecule.
|
| 100 |
-
|
| 101 |
-
Args:
|
| 102 |
-
mol (Molecule): The molecule object.
|
| 103 |
-
connected (bool): Whether to check for connectivity in the molecule. Defaults to True.
|
| 104 |
-
max_length (int): The maximum length of the adjacency matrix. Defaults to the number of atoms in the molecule.
|
| 105 |
|
| 106 |
-
Returns:
|
| 107 |
-
numpy.ndarray or None: The adjacency matrix if connected and all atoms have a degree greater than 0,
|
| 108 |
-
otherwise None.
|
| 109 |
-
"""
|
| 110 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 111 |
|
| 112 |
A = np.zeros(shape=(max_length, max_length))
|
|
@@ -121,33 +92,15 @@ class DruggenDataset(InMemoryDataset):
|
|
| 121 |
|
| 122 |
return A if connected and (degree > 0).all() else None
|
| 123 |
|
| 124 |
-
def
|
| 125 |
-
"""
|
| 126 |
-
Generates the node features for a molecule.
|
| 127 |
-
|
| 128 |
-
Args:
|
| 129 |
-
mol (Molecule): The molecule object.
|
| 130 |
-
max_length (int): The maximum length of the node features. Defaults to the number of atoms in the molecule.
|
| 131 |
|
| 132 |
-
Returns:
|
| 133 |
-
numpy.ndarray: The node features matrix.
|
| 134 |
-
"""
|
| 135 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 136 |
|
| 137 |
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + [0] * (
|
| 138 |
max_length - mol.GetNumAtoms()))
|
| 139 |
|
| 140 |
-
def
|
| 141 |
-
"""
|
| 142 |
-
Generates additional features for a molecule.
|
| 143 |
|
| 144 |
-
Args:
|
| 145 |
-
mol (Molecule): The molecule object.
|
| 146 |
-
max_length (int): The maximum length of the additional features. Defaults to the number of atoms in the molecule.
|
| 147 |
-
|
| 148 |
-
Returns:
|
| 149 |
-
numpy.ndarray: The additional features matrix.
|
| 150 |
-
"""
|
| 151 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 152 |
|
| 153 |
features = np.array([[*[a.GetDegree() == i for i in range(5)],
|
|
@@ -164,19 +117,19 @@ class DruggenDataset(InMemoryDataset):
|
|
| 164 |
|
| 165 |
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))
|
| 166 |
|
| 167 |
-
def decoder_load(self, dictionary_name):
|
| 168 |
-
with open("DrugGEN/data/decoders/" + dictionary_name + "_" +
|
| 169 |
return pickle.load(f)
|
| 170 |
|
| 171 |
def drugs_decoder_load(self, dictionary_name):
|
| 172 |
with open("DrugGEN/data/decoders/" + dictionary_name +'.pkl', 'rb') as f:
|
| 173 |
return pickle.load(f)
|
| 174 |
|
| 175 |
-
def matrices2mol(self, node_labels, edge_labels, strict=True):
|
| 176 |
mol = Chem.RWMol()
|
| 177 |
RDLogger.DisableLog('rdApp.*')
|
| 178 |
-
atom_decoders = self.decoder_load("atom")
|
| 179 |
-
bond_decoders = self.decoder_load("bond")
|
| 180 |
|
| 181 |
for node_label in node_labels:
|
| 182 |
mol.AddAtom(Chem.Atom(atom_decoders[node_label]))
|
|
@@ -184,7 +137,7 @@ class DruggenDataset(InMemoryDataset):
|
|
| 184 |
for start, end in zip(*np.nonzero(edge_labels)):
|
| 185 |
if start > end:
|
| 186 |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
|
| 187 |
-
mol = self.correct_mol(mol)
|
| 188 |
if strict:
|
| 189 |
try:
|
| 190 |
|
|
@@ -194,18 +147,18 @@ class DruggenDataset(InMemoryDataset):
|
|
| 194 |
|
| 195 |
return mol
|
| 196 |
|
| 197 |
-
def drug_decoder_load(self, dictionary_name):
|
| 198 |
|
| 199 |
''' Loading the atom and bond decoders '''
|
| 200 |
|
| 201 |
-
with open("DrugGEN/data/decoders/" + dictionary_name +"_" +
|
| 202 |
|
| 203 |
return pickle.load(f)
|
| 204 |
-
def matrices2mol_drugs(self, node_labels, edge_labels, strict=True):
|
| 205 |
mol = Chem.RWMol()
|
| 206 |
RDLogger.DisableLog('rdApp.*')
|
| 207 |
-
atom_decoders = self.drug_decoder_load("atom")
|
| 208 |
-
bond_decoders = self.drug_decoder_load("bond")
|
| 209 |
|
| 210 |
for node_label in node_labels:
|
| 211 |
|
|
@@ -214,7 +167,7 @@ class DruggenDataset(InMemoryDataset):
|
|
| 214 |
for start, end in zip(*np.nonzero(edge_labels)):
|
| 215 |
if start > end:
|
| 216 |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
|
| 217 |
-
mol = self.correct_mol(mol)
|
| 218 |
if strict:
|
| 219 |
try:
|
| 220 |
Chem.SanitizeMol(mol)
|
|
@@ -240,7 +193,7 @@ class DruggenDataset(InMemoryDataset):
|
|
| 240 |
|
| 241 |
|
| 242 |
def correct_mol(self,x):
|
| 243 |
-
|
| 244 |
mol = x
|
| 245 |
while True:
|
| 246 |
flag, atomid_valence = self.check_valency(mol)
|
|
@@ -284,41 +237,34 @@ class DruggenDataset(InMemoryDataset):
|
|
| 284 |
return out.float()
|
| 285 |
|
| 286 |
def process(self, size= None):
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
|
|
|
| 300 |
data_list = []
|
| 301 |
-
|
| 302 |
self.m_dim = len(self.atom_decoder_m)
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
mol = Chem.MolFromSmiles(smile)
|
| 308 |
-
|
| 309 |
-
# filter by max atom size
|
| 310 |
-
if mol.GetNumAtoms() > max_length:
|
| 311 |
-
continue
|
| 312 |
-
|
| 313 |
-
A = self.generate_adjacency_matrix(mol, connected=True, max_length=max_length)
|
| 314 |
if A is not None:
|
| 315 |
|
| 316 |
|
| 317 |
-
x = torch.from_numpy(self.
|
| 318 |
|
| 319 |
x = self.label2onehot(x,self.m_dim).squeeze()
|
| 320 |
if self.features:
|
| 321 |
-
f = torch.from_numpy(self.
|
| 322 |
x = torch.concat((x,f), dim=-1)
|
| 323 |
|
| 324 |
adjacency = torch.from_numpy(A)
|
|
@@ -335,9 +281,9 @@ class DruggenDataset(InMemoryDataset):
|
|
| 335 |
data = self.pre_transform(data)
|
| 336 |
|
| 337 |
data_list.append(data)
|
| 338 |
-
|
| 339 |
|
| 340 |
-
|
| 341 |
|
| 342 |
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file))
|
| 343 |
|
|
@@ -346,4 +292,4 @@ class DruggenDataset(InMemoryDataset):
|
|
| 346 |
|
| 347 |
if __name__ == '__main__':
|
| 348 |
data = DruggenDataset("DrugGEN/data")
|
| 349 |
-
|
|
|
|
| 1 |
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
from rdkit import Chem
|
|
|
|
| 5 |
from torch_geometric.data import (Data, InMemoryDataset)
|
| 6 |
+
import os.path as osp
|
| 7 |
+
import pickle
|
| 8 |
+
import torch
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import re
|
| 11 |
+
from rdkit import RDLogger
|
| 12 |
RDLogger.DisableLog('rdApp.*')
|
| 13 |
class DruggenDataset(InMemoryDataset):
|
| 14 |
|
|
|
|
| 18 |
self.raw_files = raw_files
|
| 19 |
self.max_atom = max_atom
|
| 20 |
self.features = features
|
|
|
|
| 21 |
super().__init__(root, transform, pre_transform, pre_filter)
|
| 22 |
+
path = osp.join(self.processed_dir, dataset_file)
|
| 23 |
+
self.data, self.slices = torch.load(path)
|
| 24 |
+
self.root = root
|
| 25 |
|
| 26 |
+
|
| 27 |
+
@property
|
| 28 |
+
def processed_dir(self):
|
| 29 |
+
|
| 30 |
+
return self.root
|
| 31 |
+
|
| 32 |
@property
|
| 33 |
def raw_file_names(self):
|
| 34 |
return self.raw_files
|
| 35 |
|
| 36 |
@property
|
| 37 |
def processed_file_names(self):
|
|
|
|
|
|
|
|
|
|
| 38 |
return self.dataset_file
|
| 39 |
|
| 40 |
def _generate_encoders_decoders(self, data):
|
| 41 |
+
|
|
|
|
|
|
|
| 42 |
self.data = data
|
| 43 |
print('Creating atoms encoder and decoder..')
|
| 44 |
+
atom_labels = sorted(set([atom.GetAtomicNum() for mol in self.data for atom in mol.GetAtoms()] + [0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
self.atom_encoder_m = {l: i for i, l in enumerate(atom_labels)}
|
| 46 |
self.atom_decoder_m = {i: l for i, l in enumerate(atom_labels)}
|
| 47 |
self.atom_num_types = len(atom_labels)
|
| 48 |
+
print('Created atoms encoder and decoder with {} atom types and 1 PAD symbol!'.format(
|
| 49 |
+
self.atom_num_types - 1))
|
| 50 |
print("atom_labels", atom_labels)
|
| 51 |
print('Creating bonds encoder and decoder..')
|
| 52 |
+
bond_labels = [Chem.rdchem.BondType.ZERO] + list(sorted(set(bond.GetBondType()
|
| 53 |
+
for mol in self.data
|
| 54 |
+
for bond in mol.GetBonds())))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
print("bond labels", bond_labels)
|
| 56 |
self.bond_encoder_m = {l: i for i, l in enumerate(bond_labels)}
|
| 57 |
self.bond_decoder_m = {i: l for i, l in enumerate(bond_labels)}
|
| 58 |
self.bond_num_types = len(bond_labels)
|
| 59 |
+
print('Created bonds encoder and decoder with {} bond types and 1 PAD symbol!'.format(
|
| 60 |
+
self.bond_num_types - 1))
|
| 61 |
#dataset_names = str(self.dataset_name)
|
| 62 |
with open("DrugGEN/data/encoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_encoders:
|
| 63 |
pickle.dump(self.atom_encoder_m,atom_encoders)
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
|
| 79 |
+
def _genA(self, mol, connected=True, max_length=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 82 |
|
| 83 |
A = np.zeros(shape=(max_length, max_length))
|
|
|
|
| 92 |
|
| 93 |
return A if connected and (degree > 0).all() else None
|
| 94 |
|
| 95 |
+
def _genX(self, mol, max_length=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
| 97 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 98 |
|
| 99 |
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + [0] * (
|
| 100 |
max_length - mol.GetNumAtoms()))
|
| 101 |
|
| 102 |
+
def _genF(self, mol, max_length=None):
|
|
|
|
|
|
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
max_length = max_length if max_length is not None else mol.GetNumAtoms()
|
| 105 |
|
| 106 |
features = np.array([[*[a.GetDegree() == i for i in range(5)],
|
|
|
|
| 117 |
|
| 118 |
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))
|
| 119 |
|
| 120 |
+
def decoder_load(self, dictionary_name, file):
|
| 121 |
+
with open("DrugGEN/data/decoders/" + dictionary_name + "_" + file + '.pkl', 'rb') as f:
|
| 122 |
return pickle.load(f)
|
| 123 |
|
| 124 |
def drugs_decoder_load(self, dictionary_name):
|
| 125 |
with open("DrugGEN/data/decoders/" + dictionary_name +'.pkl', 'rb') as f:
|
| 126 |
return pickle.load(f)
|
| 127 |
|
| 128 |
+
def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None):
|
| 129 |
mol = Chem.RWMol()
|
| 130 |
RDLogger.DisableLog('rdApp.*')
|
| 131 |
+
atom_decoders = self.decoder_load("atom", file_name)
|
| 132 |
+
bond_decoders = self.decoder_load("bond", file_name)
|
| 133 |
|
| 134 |
for node_label in node_labels:
|
| 135 |
mol.AddAtom(Chem.Atom(atom_decoders[node_label]))
|
|
|
|
| 137 |
for start, end in zip(*np.nonzero(edge_labels)):
|
| 138 |
if start > end:
|
| 139 |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
|
| 140 |
+
#mol = self.correct_mol(mol)
|
| 141 |
if strict:
|
| 142 |
try:
|
| 143 |
|
|
|
|
| 147 |
|
| 148 |
return mol
|
| 149 |
|
| 150 |
+
def drug_decoder_load(self, dictionary_name, file):
|
| 151 |
|
| 152 |
''' Loading the atom and bond decoders '''
|
| 153 |
|
| 154 |
+
with open("DrugGEN/data/decoders/" + dictionary_name +"_" + file +'.pkl', 'rb') as f:
|
| 155 |
|
| 156 |
return pickle.load(f)
|
| 157 |
+
def matrices2mol_drugs(self, node_labels, edge_labels, strict=True, file_name=None):
|
| 158 |
mol = Chem.RWMol()
|
| 159 |
RDLogger.DisableLog('rdApp.*')
|
| 160 |
+
atom_decoders = self.drug_decoder_load("atom", file_name)
|
| 161 |
+
bond_decoders = self.drug_decoder_load("bond", file_name)
|
| 162 |
|
| 163 |
for node_label in node_labels:
|
| 164 |
|
|
|
|
| 167 |
for start, end in zip(*np.nonzero(edge_labels)):
|
| 168 |
if start > end:
|
| 169 |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
|
| 170 |
+
#mol = self.correct_mol(mol)
|
| 171 |
if strict:
|
| 172 |
try:
|
| 173 |
Chem.SanitizeMol(mol)
|
|
|
|
| 193 |
|
| 194 |
|
| 195 |
def correct_mol(self,x):
|
| 196 |
+
xsm = Chem.MolToSmiles(x, isomericSmiles=True)
|
| 197 |
mol = x
|
| 198 |
while True:
|
| 199 |
flag, atomid_valence = self.check_valency(mol)
|
|
|
|
| 237 |
return out.float()
|
| 238 |
|
| 239 |
def process(self, size= None):
|
| 240 |
+
|
| 241 |
+
mols = [Chem.MolFromSmiles(line) for line in open(self.raw_files, 'r').readlines()]
|
| 242 |
+
|
| 243 |
+
mols = list(filter(lambda x: x.GetNumAtoms() <= self.max_atom, mols))
|
| 244 |
+
mols = mols[:size]
|
| 245 |
+
indices = range(len(mols))
|
| 246 |
+
|
| 247 |
+
self._generate_encoders_decoders(mols)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
|
| 251 |
+
pbar = tqdm(total=len(indices))
|
| 252 |
+
pbar.set_description(f'Processing chembl dataset')
|
| 253 |
+
max_length = max(mol.GetNumAtoms() for mol in mols)
|
| 254 |
data_list = []
|
| 255 |
+
|
| 256 |
self.m_dim = len(self.atom_decoder_m)
|
| 257 |
+
for idx in indices:
|
| 258 |
+
mol = mols[idx]
|
| 259 |
+
A = self._genA(mol, connected=True, max_length=max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
if A is not None:
|
| 261 |
|
| 262 |
|
| 263 |
+
x = torch.from_numpy(self._genX(mol, max_length=max_length)).to(torch.long).view(1, -1)
|
| 264 |
|
| 265 |
x = self.label2onehot(x,self.m_dim).squeeze()
|
| 266 |
if self.features:
|
| 267 |
+
f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1)
|
| 268 |
x = torch.concat((x,f), dim=-1)
|
| 269 |
|
| 270 |
adjacency = torch.from_numpy(A)
|
|
|
|
| 281 |
data = self.pre_transform(data)
|
| 282 |
|
| 283 |
data_list.append(data)
|
| 284 |
+
pbar.update(1)
|
| 285 |
|
| 286 |
+
pbar.close()
|
| 287 |
|
| 288 |
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file))
|
| 289 |
|
|
|
|
| 292 |
|
| 293 |
if __name__ == '__main__':
|
| 294 |
data = DruggenDataset("DrugGEN/data")
|
| 295 |
+
|