Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 1,426 Bytes
			
			| c2a02c6 c1132e6 c2a02c6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import pdb_featureVector
import alphafold_featureVector
import argparse
parser = argparse.ArgumentParser(description='ASCARIS')
parser.add_argument('-s', '--source_option',
                    help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
                    default=1)
parser.add_argument('-i', '--input_datapoint',
                    help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
parser.add_argument('-impute', '--imputation_state', default='True',
                    help='Whether resulting feature vector should be imputed or not. Default True.')
args = parser.parse_args()
input_set = args.input_datapoint
mode = args.source_option
impute = args.imputation_state
def run_featureVector(input_set, mode, impute):
    print('*****************************************')
    print('Feature vector generation is in progress. \nPlease check log file for updates..')
    print('*****************************************')
    mode = int(mode)
    if mode == 1:
        pdb_featureVector.pdb(input_set, mode, impute)
    elif mode == 2:
        alphafold_featureVector.alphafold(input_set, mode, impute)
if __name__ == '__main__':
    run_featureVector(input_set, mode, impute)
 | 
