Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -78,14 +78,11 @@ async def search(query: str, k: int):
|
|
78 |
embeddings_query = model(**batch_query)
|
79 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
80 |
|
|
|
81 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
82 |
scores = retriever_evaluator.evaluate(qs, ds)
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
results = [{"page": idx, "image": "image_placeholder"} for idx in top_k_indices]
|
87 |
-
|
88 |
-
return {"results": results}
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
78 |
embeddings_query = model(**batch_query)
|
79 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
80 |
|
81 |
+
# run evaluation
|
82 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
83 |
scores = retriever_evaluator.evaluate(qs, ds)
|
84 |
+
best_page = int(scores.argmax(axis=1).item())
|
85 |
+
return f"The most relevant page is {best_page}", images[best_page]
|
|
|
|
|
|
|
|
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|