Spaces:
Running
Running
from torch import nn | |
from transformers import Idefics2Model, Idefics2PreTrainedModel | |
class BiIdefics(Idefics2PreTrainedModel): | |
def __init__(self, config): | |
super(BiIdefics, self).__init__(config=config) | |
self.model: Idefics2Model = Idefics2Model(config) | |
self.pooling_strategy = "last" | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
outputs = self.model(*args, **kwargs) | |
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size) | |
# pooling - last token | |
proj = last_hidden_states[:, -1, :] | |
# normalize l2 norm | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
return proj | |
class ColIdefics(Idefics2PreTrainedModel): | |
def __init__(self, config): | |
super(ColIdefics, self).__init__(config=config) | |
self.model: Idefics2Model = Idefics2Model(config) | |
self.dim = 128 | |
self.linear = nn.Linear(self.model.config.text_config.hidden_size, self.dim) | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
outputs = self.model(*args, **kwargs) | |
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size) | |
proj = self.linear(last_hidden_states) | |
# normalize l2 norm | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
proj = proj * kwargs["attention_mask"].unsqueeze(-1) | |
return proj | |