cvquest-colpali / app.py
HUANG-Stephanie's picture
Update app.py
fe7b387 verified
raw
history blame
5.8 kB
import os
import sys
import tempfile
import gradio as gr
import requests
import uvicorn
import torch
import base64
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import RedirectResponse, StreamingResponse
from typing import List
from pdf2image import convert_from_bytes
from PIL import Image
from torch.utils.data import DataLoader
from transformers import AutoProcessor
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from io import BytesIO
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
process_images,
process_queries,
)
app = FastAPI()
# Load model
model_name = "vidore/colpali"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval()
model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token = token)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
# In-memory storage
ds = []
images = []
@app.get("/")
def read_root():
return RedirectResponse(url="/docs")
@app.post("/index")
async def index(files: List[UploadFile] = File(...)):
global ds, images
images = []
ds = []
for file in files:
content = await file.read()
pdf_image_list = convert_from_bytes(content)
images.extend(pdf_image_list)
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
for batch_doc in dataloader:
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return {"message": f"Uploaded and converted {len(images)} pages"}
def generate_pdf(results):
pdf_buffer = BytesIO()
c = canvas.Canvas(pdf_buffer, pagesize=letter)
width, height = letter
for result in results:
img_base64 = result["image"]
img_data = base64.b64decode(img_base64)
# Create a temporary file to hold the image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
temp_file.write(img_data)
temp_file.flush()
# Draw the image from the temporary file
c.drawImage(temp_file.name, 0, 0, width, height)
c.showPage()
# Clean up the temporary file
os.remove(temp_file.name)
c.save()
pdf_buffer.seek(0)
return pdf_buffer
@app.get("/search")
async def search(query: str, k: int = 1):
qs = []
with torch.no_grad():
batch_query = process_queries(processor, [query], mock_image)
batch_query = {k: v.to(device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
results = []
for idx in top_k_indices:
img_byte_arr = BytesIO()
images[idx].save(img_byte_arr, format='PNG')
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
results.append({"image": img_base64, "page": f"Page {idx}"})
pdf_buffer = generate_pdf(results)
# Use StreamingResponse to handle in-memory file
response = StreamingResponse(pdf_buffer, media_type='application/pdf')
response.headers['Content-Disposition'] = 'attachment; filename="results.pdf"'
return response
@app.post("/search_by_cv")
async def search_by_cv(file: UploadFile = File(...), k: int = 10):
# Lire le fichier PDF uploadé
content = await file.read()
pdf_image_list = convert_from_bytes(content)
# Générer les embeddings pour les pages du PDF uploadé
qs = []
dataloader = DataLoader(
pdf_image_list,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
# Comparer les embeddings du CV uploadé avec ceux déjà indexés
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
# Trouver les indices des résultats les plus pertinents
top_k_indices = scores.argsort(axis=1)[0][-k-1:-1][::-1]
# Préparer les résultats sous forme d'images
results = []
for idx in top_k_indices:
img_byte_arr = BytesIO()
images[idx].save(img_byte_arr, format='PNG')
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
results.append({"image": img_base64, "page": f"Page {idx}"})
# Générer le PDF des résultats
pdf_buffer = generate_pdf(results)
# Utiliser StreamingResponse pour renvoyer le fichier PDF généré
response = StreamingResponse(pdf_buffer, media_type='application/pdf')
response.headers['Content-Disposition'] = 'attachment; filename="results.pdf"'
return response
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)