File size: 10,766 Bytes
9ff79dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# HuggingFace trainer
import json
import os
from dataclasses import dataclass
from typing import Callable, Dict, Optional

import torch
from datasets import concatenate_datasets
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, Idefics2Processor, PreTrainedModel, PreTrainedTokenizer, TrainingArguments

from colpali_engine.dataset.custom_collator import CustomCollator
from colpali_engine.loss.colbert_loss import BiEncoderLoss, BiPairwiseCELoss, ColbertLoss, ColbertPairwiseCELoss
from colpali_engine.trainer.contrastive_trainer import ContrastiveTrainer
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.gpu_stats import print_gpu_utilization, print_summary


@dataclass
class ColModelTrainingConfig:
    model: PreTrainedModel
    tr_args: TrainingArguments = None
    output_dir: str = None
    max_length: int = 256
    run_eval: bool = True
    run_train: bool = True
    peft_config: Optional[LoraConfig] = None
    add_suffix: bool = False
    processor: Idefics2Processor = None
    tokenizer: PreTrainedTokenizer = None
    loss_func: Optional[Callable] = ColbertLoss()
    dataset_loading_func: Optional[Callable] = None
    eval_dataset_loader: Optional[Dict[str, Callable]] = None
    pretrained_peft_model_name_or_path: Optional[str] = None

    def __post_init__(self):
        if self.output_dir is None:
            sanitized_name = str(self.model.name_or_path).replace("/", "_")
            self.output_dir = f"./models/{sanitized_name}"

        if self.tr_args is None:
            self.tr_args = TrainingArguments(output_dir=self.output_dir)
        elif self.tr_args.output_dir is None:
            self.tr_args.output_dir = self.output_dir

        # cast if string
        if isinstance(self.tr_args.learning_rate, str):
            self.tr_args.learning_rate = float(self.tr_args.learning_rate)
        self.tr_args.remove_unused_columns = False

        if self.processor is None and self.tokenizer is None:
            print("Using textual model tokenization")
            self.tokenizer = AutoTokenizer.from_pretrained(self.model.name_or_path)

        if self.pretrained_peft_model_name_or_path is not None:
            self.model.load_adapter(self.pretrained_peft_model_name_or_path)
            print(f"Loaded pretrained adapter from {self.pretrained_peft_model_name_or_path}")

        if self.peft_config is not None:
            print("Configurating PEFT model")
            if self.processor is None:
                # Might be deprecated - use the "else" branch
                self.model = prepare_model_for_kbit_training(self.model)  # use_gradient_checkpointing=True
                # self.model.enable_input_require_grads()
                self.model = get_peft_model(self.model, self.peft_config)
                self.model.print_trainable_parameters()
            else:
                # Ugly debugging hack
                # if self.model.model.config.text_config.vocab_size == 32000:
                #     print("DEBUG: Resizing token embeddings - This should not happen in a real scenario!")
                #     self.model.model.text_model.resize_token_embeddings(32003)
                #     self.model.model.vision_model.encoder.layers = self.model.model.vision_model.encoder.layers[0:2]
                # self.model.enable_input_require_grads()
                if self.pretrained_peft_model_name_or_path is None:
                    self.model.add_adapter(self.peft_config)
                    self.model.enable_adapters()
                else:
                    print(f"Adapter already loaded from {self.pretrained_peft_model_name_or_path}. Not overwriting.")

    print_gpu_utilization()


class ColModelTraining:
    def __init__(self, config: ColModelTrainingConfig) -> None:
        self.config = config
        self.model = self.config.model
        self.dataset = self.config.dataset_loading_func()
        self.collator = CustomCollator(
            processor=self.config.processor, tokenizer=self.config.tokenizer, max_length=self.config.max_length
        )
        self.current_git_hash = os.popen("git rev-parse HEAD").read().strip()
        self.retriever_evaluator = CustomEvaluator(
            is_multi_vector=(
                isinstance(self.config.loss_func, ColbertLoss)
                or isinstance(self.config.loss_func, ColbertPairwiseCELoss)
            )
        )

    def train(self) -> None:

        trainer = ContrastiveTrainer(
            model=self.model,
            train_dataset=self.dataset["train"],
            eval_dataset=self.dataset["test"],
            args=self.config.tr_args,
            data_collator=self.collator,
            loss_func=self.config.loss_func,
            is_vision_model=self.config.processor is not None,
        )
        trainer.args.remove_unused_columns = False

        result = trainer.train()
        print_summary(result)

    def eval_dataset(self, test_dataset):

        self.model.eval()

        # # debug
        # if len(test_dataset) > 200:
        #     test_dataset = test_dataset.select(range(0, 100))

        idx_with_query = [idx for idx, sample in enumerate(test_dataset["query"]) if sample is not None]
        idx_without_query = [idx for idx, sample in enumerate(test_dataset["query"]) if sample is None]

        dataloader_with_query = DataLoader(
            test_dataset.select(idx_with_query),
            batch_size=self.config.tr_args.per_device_eval_batch_size,
            shuffle=False,
            collate_fn=self.collator,
        )
        dataloader_without_query = DataLoader(
            test_dataset.select(idx_without_query),
            batch_size=self.config.tr_args.per_device_eval_batch_size,
            shuffle=False,
            collate_fn=self.collator,
        )

        # dataset is ordered so that non-null queries come first
        test_dataset = concatenate_datasets(
            [test_dataset.select(idx_with_query), test_dataset.select(idx_without_query)]
        )

        relevant_docs = {}
        docidx_2_docid = {}
        qsidx_2_query = []
        for idx, sample in enumerate(test_dataset):
            doc_id = sample["image_filename"] if "image_filename" in sample else str(hash(sample["doc"]))
            # query_id = sample["query_id"] if "query_id" in sample else str(hash(sample["query"]))
            if sample["query"] is not None:
                relevant_docs[str(idx)] = {doc_id: 1}
                qsidx_2_query.append(str(idx))
            docidx_2_docid[str(idx)] = doc_id

        qs = []
        ps = []

        device = self.model.device
        with (torch.no_grad()):
            for dataloader in [dataloader_with_query, dataloader_without_query]:
                for batch in tqdm(dataloader):
                    if "doc_pixel_values" not in batch:
                        doc = self.model(
                            input_ids=batch["doc_input_ids"].to(device),
                            attention_mask=batch["doc_attention_mask"].to(device),
                        )

                    else:
                        if "doc_pixel_attention_mask" in batch:
                            doc = self.model(
                                input_ids=batch["doc_input_ids"].to(device),
                                attention_mask=batch["doc_attention_mask"].to(device),
                                pixel_values=batch["doc_pixel_values"].to(device),
                                pixel_attention_mask=batch["doc_pixel_attention_mask"].to(device),
                            )
                        else:
                            doc = self.model(
                                input_ids=batch["doc_input_ids"].to(device),
                                attention_mask=batch["doc_attention_mask"].to(device),
                                pixel_values=batch["doc_pixel_values"].to(device),
                            )

                    ps.extend(list(torch.unbind(doc.to("cpu"))))

                    if "query_input_ids" in batch:
                        query = self.model(
                            input_ids=batch["query_input_ids"].to(device),
                            attention_mask=batch["query_attention_mask"].to(device),
                        )
                        # variable len
                        qs.extend(list(torch.unbind(query.to("cpu"))))

        print("Embeddings computed, evaluating")
        scores = self.retriever_evaluator.evaluate(qs, ps)
        # scores is 2d array of shape (n_queries, n_docs)
        # turn it into a dict
        results = {}
        assert scores.shape[0] == len(qsidx_2_query)
        for idx, scores_per_query in enumerate(scores):
            results[qsidx_2_query[idx]] = {
                docidx_2_docid[str(docidx)]: float(score) for docidx, score in enumerate(scores_per_query)
            }

        # evaluate
        metrics = self.retriever_evaluator.compute_metrics(relevant_docs, results)
        print(metrics)
        return metrics

    def eval(self) -> None:

        print("Evaluating on validation set")
        metrics = self.eval_dataset(self.dataset["test"])
        print(f"Metrics for validation set: {metrics}")
        all_metrics = {"validation_set": metrics}

        if self.config.eval_dataset_loader is not None:
            for test_name, test_dataset_loading_func in self.config.eval_dataset_loader.items():
                print(f"Evaluating {test_name}")
                test_ds = test_dataset_loading_func()
                metrics = self.eval_dataset(test_ds)
                all_metrics[test_name] = metrics
                print(f"Metrics for {test_name}: {metrics}")

                # checkpoint dumps
                with open(f"{self.config.output_dir}/results.json", "w") as f:
                    json.dump(all_metrics, f)

        # save results as json
        with open(f"{self.config.output_dir}/results.json", "w") as f:
            json.dump(all_metrics, f)

    def save(self, config_file):
        # save model
        self.model.save_pretrained(self.config.output_dir)
        if self.config.tokenizer is not None:
            self.config.tokenizer.save_pretrained(self.config.output_dir)
        if self.config.processor is not None:
            self.config.processor.save_pretrained(self.config.output_dir)  # save config

        # copy-paste the yml file with os
        os.system(f"cp {config_file} {self.config.output_dir}/training_config.yml")

        # save git hash of the commit at beginning of training
        with open(f"{self.config.output_dir}/git_hash.txt", "w") as f:
            f.write(self.current_git_hash)