File size: 5,510 Bytes
9ff79dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os

from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

USE_LOCAL_DATASET = os.environ.get("USE_LOCAL_DATASET", "1") == "1"


def add_metadata_column(dataset, column_name, value):
    def add_source(example):
        example[column_name] = value
        return example

    return dataset.map(add_source)


def load_train_set() -> DatasetDict:

    ds_paths = [
        "infovqa_train",
        "docvqa_train",
        "arxivqa_train",
        "tatdqa_train",
        "syntheticDocQA_government_reports_train",
        "syntheticDocQA_healthcare_industry_train",
        "syntheticDocQA_artificial_intelligence_train",
        "syntheticDocQA_energy_train",
    ]
    base_path = "./data_dir/" if USE_LOCAL_DATASET else "vidore/"
    ds_tot = []
    for path in ds_paths:
        cpath = base_path + path
        ds = load_dataset(cpath, split="train")
        if "arxivqa" in path:
            # subsample 10k
            ds = ds.shuffle(42).select(range(10000))
        ds_tot.append(ds)

    dataset = concatenate_datasets(ds_tot)
    dataset = dataset.shuffle(seed=42)
    # split into train and test
    dataset_eval = dataset.select(range(500))
    dataset = dataset.select(range(500, len(dataset)))
    ds_dict = DatasetDict({"train": dataset, "test": dataset_eval})
    return ds_dict


def load_train_set_with_tabfquad() -> DatasetDict:

    ds_paths = [
        "infovqa_train",
        "docvqa_train",
        "arxivqa_train",
        "tatdqa_train",
        "tabfquad_train_subsampled",
        "syntheticDocQA_government_reports_train",
        "syntheticDocQA_healthcare_industry_train",
        "syntheticDocQA_artificial_intelligence_train",
        "syntheticDocQA_energy_train",
    ]
    base_path = "./data_dir/" if USE_LOCAL_DATASET else "vidore/"
    ds_tot = []
    for path in ds_paths:
        cpath = base_path + path
        ds = load_dataset(cpath, split="train")
        if "arxivqa" in path:
            # subsample 10k
            ds = ds.shuffle(42).select(range(10000))
        ds_tot.append(ds)

    dataset = concatenate_datasets(ds_tot)
    dataset = dataset.shuffle(seed=42)
    # split into train and test
    dataset_eval = dataset.select(range(500))
    dataset = dataset.select(range(500, len(dataset)))
    ds_dict = DatasetDict({"train": dataset, "test": dataset_eval})
    return ds_dict


def load_train_set_with_docmatix() -> DatasetDict:

    ds_paths = [
        "infovqa_train",
        "docvqa_train",
        "arxivqa_train",
        "tatdqa_train",
        "tabfquad_train_subsampled",
        "syntheticDocQA_government_reports_train",
        "syntheticDocQA_healthcare_industry_train",
        "syntheticDocQA_artificial_intelligence_train",
        "syntheticDocQA_energy_train",
        "Docmatix_filtered_train",
    ]
    base_path = "./data_dir/" if USE_LOCAL_DATASET else "vidore/"
    ds_tot = []
    for path in ds_paths:
        cpath = base_path + path
        ds = load_dataset(cpath, split="train")
        if "arxivqa" in path:
            # subsample 10k
            ds = ds.shuffle(42).select(range(10000))
        ds_tot.append(ds)

    dataset = concatenate_datasets(ds_tot)
    dataset = dataset.shuffle(seed=42)
    # split into train and test
    dataset_eval = dataset.select(range(500))
    dataset = dataset.select(range(500, len(dataset)))
    ds_dict = DatasetDict({"train": dataset, "test": dataset_eval})
    return ds_dict


def load_docvqa_dataset() -> DatasetDict:
    if USE_LOCAL_DATASET:
        dataset_doc = load_dataset("./data_dir/DocVQA", "DocVQA", split="validation")
        dataset_doc_eval = load_dataset("./data_dir/DocVQA", "DocVQA", split="test")
        dataset_info = load_dataset("./data_dir/DocVQA", "InfographicVQA", split="validation")
        dataset_info_eval = load_dataset("./data_dir/DocVQA", "InfographicVQA", split="test")
    else:
        dataset_doc = load_dataset("lmms-lab/DocVQA", "DocVQA", split="validation")
        dataset_doc_eval = load_dataset("lmms-lab/DocVQA", "DocVQA", split="test")
        dataset_info = load_dataset("lmms-lab/DocVQA", "InfographicVQA", split="validation")
        dataset_info_eval = load_dataset("lmms-lab/DocVQA", "InfographicVQA", split="test")

    # concatenate the two datasets
    dataset = concatenate_datasets([dataset_doc, dataset_info])
    dataset_eval = concatenate_datasets([dataset_doc_eval, dataset_info_eval])
    # sample 100 from eval dataset
    dataset_eval = dataset_eval.shuffle(seed=42).select(range(200))

    # rename question as query
    dataset = dataset.rename_column("question", "query")
    dataset_eval = dataset_eval.rename_column("question", "query")

    # create new column image_filename that corresponds to ucsf_document_id if not None, else image_url
    dataset = dataset.map(
        lambda x: {"image_filename": x["ucsf_document_id"] if x["ucsf_document_id"] is not None else x["image_url"]}
    )
    dataset_eval = dataset_eval.map(
        lambda x: {"image_filename": x["ucsf_document_id"] if x["ucsf_document_id"] is not None else x["image_url"]}
    )

    ds_dict = DatasetDict({"train": dataset, "test": dataset_eval})

    return ds_dict


class TestSetFactory:
    def __init__(self, dataset_path):
        self.dataset_path = dataset_path

    def __call__(self, *args, **kwargs):
        dataset = load_dataset(self.dataset_path, split="test")
        return dataset


if __name__ == "__main__":
    ds = TestSetFactory("vidore/tabfquad_test_subsampled")()
    print(ds)