Spaces:
Running
Running
File size: 6,711 Bytes
9ff79dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from torch import nn
from transformers import (
BertModel,
BertPreTrainedModel,
CamembertModel,
CamembertPreTrainedModel,
LlamaModel,
LlamaPreTrainedModel,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
class ColCamembert(CamembertPreTrainedModel):
def __init__(self, config):
super(ColCamembert, self).__init__(config=config)
self.roberta: CamembertPreTrainedModel = CamembertModel(config)
self.dim = 128
self.linear = nn.Linear(self.roberta.config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Camenbert and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.roberta(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
proj = self.linear(last_hidden_states)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
class ColXLMRoBERTa(XLMRobertaPreTrainedModel):
def __init__(self, config):
super(ColXLMRoBERTa, self).__init__(config=config)
self.roberta: XLMRobertaPreTrainedModel = XLMRobertaModel(config)
self.dim = 128
self.linear = nn.Linear(self.roberta.config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Roberta and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.roberta(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
proj = self.linear(last_hidden_states)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
class BiXLMRoBERTa(XLMRobertaPreTrainedModel):
def __init__(self, config):
super(BiXLMRoBERTa, self).__init__(config=config)
self.roberta: XLMRobertaPreTrainedModel = XLMRobertaModel(config)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Roberta and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.roberta(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
# pooling - mean tokens that have attention mask == 1
proj = last_hidden_states * kwargs["attention_mask"].unsqueeze(-1)
proj = proj.sum(dim=1) / kwargs["attention_mask"].sum(dim=1, keepdim=True)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
return proj
class ColBERT(BertPreTrainedModel):
def __init__(self, config):
super(ColBERT, self).__init__(config=config)
self.bert: BertModel = BertModel(config)
self.dim = 128
self.linear = nn.Linear(self.bert.config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through BERT and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.bert(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
proj = self.linear(last_hidden_states)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
class BiBERT(BertPreTrainedModel):
def __init__(self, config):
super(BiBERT, self).__init__(config=config)
self.bert: BertModel = BertModel(config)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through BERT and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.bert(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
# pooling - mean tokens that have attention mask == 1
proj = last_hidden_states * kwargs["attention_mask"].unsqueeze(-1)
proj = proj.sum(dim=1) / kwargs["attention_mask"].sum(dim=1, keepdim=True)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
return proj
class ColLlama(LlamaPreTrainedModel):
def __init__(self, config):
super(ColLlama, self).__init__(config=config)
self.model: LlamaModel = LlamaModel(config)
self.dim = 128
self.linear = nn.Linear(self.model.config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.model(*args, **kwargs)
last_hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size)
proj = self.linear(last_hidden_states)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
|