File size: 6,711 Bytes
9ff79dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from torch import nn
from transformers import (
    BertModel,
    BertPreTrainedModel,
    CamembertModel,
    CamembertPreTrainedModel,
    LlamaModel,
    LlamaPreTrainedModel,
    XLMRobertaModel,
    XLMRobertaPreTrainedModel,
)


class ColCamembert(CamembertPreTrainedModel):
    def __init__(self, config):
        super(ColCamembert, self).__init__(config=config)
        self.roberta: CamembertPreTrainedModel = CamembertModel(config)
        self.dim = 128
        self.linear = nn.Linear(self.roberta.config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Camenbert and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.roberta(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        proj = self.linear(last_hidden_states)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj


class ColXLMRoBERTa(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super(ColXLMRoBERTa, self).__init__(config=config)
        self.roberta: XLMRobertaPreTrainedModel = XLMRobertaModel(config)
        self.dim = 128
        self.linear = nn.Linear(self.roberta.config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Roberta and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.roberta(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        proj = self.linear(last_hidden_states)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj


class BiXLMRoBERTa(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super(BiXLMRoBERTa, self).__init__(config=config)
        self.roberta: XLMRobertaPreTrainedModel = XLMRobertaModel(config)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Roberta and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.roberta(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        # pooling - mean tokens that have attention mask == 1
        proj = last_hidden_states * kwargs["attention_mask"].unsqueeze(-1)
        proj = proj.sum(dim=1) / kwargs["attention_mask"].sum(dim=1, keepdim=True)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        return proj


class ColBERT(BertPreTrainedModel):
    def __init__(self, config):
        super(ColBERT, self).__init__(config=config)
        self.bert: BertModel = BertModel(config)
        self.dim = 128
        self.linear = nn.Linear(self.bert.config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through BERT and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.bert(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        proj = self.linear(last_hidden_states)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj


class BiBERT(BertPreTrainedModel):
    def __init__(self, config):
        super(BiBERT, self).__init__(config=config)
        self.bert: BertModel = BertModel(config)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through BERT and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.bert(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        # pooling - mean tokens that have attention mask == 1
        proj = last_hidden_states * kwargs["attention_mask"].unsqueeze(-1)
        proj = proj.sum(dim=1) / kwargs["attention_mask"].sum(dim=1, keepdim=True)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        return proj


class ColLlama(LlamaPreTrainedModel):
    def __init__(self, config):
        super(ColLlama, self).__init__(config=config)
        self.model: LlamaModel = LlamaModel(config)
        self.dim = 128
        self.linear = nn.Linear(self.model.config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.model(*args, **kwargs)
        last_hidden_states = outputs[0]  # (batch_size, sequence_length, hidden_size)
        proj = self.linear(last_hidden_states)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj