File size: 2,720 Bytes
33de980
4390904
 
 
33de980
df537e3
814b6ba
 
33de980
 
 
 
 
 
 
2902a60
 
d005da4
 
 
 
 
 
33de980
 
4390904
d005da4
 
 
 
 
4390904
d005da4
 
 
 
 
 
 
33de980
 
 
d005da4
33de980
df537e3
33de980
4390904
33de980
 
0bc0485
33de980
 
 
4390904
 
 
 
 
33de980
 
4390904
 
 
 
33de980
 
4390904
33de980
df537e3
33de980
 
 
 
 
 
4390904
33de980
 
4390904
33de980
d005da4
33de980
d005da4
df537e3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import io
import os
import sys

from fastapi import FastAPI, File, UploadFile
from fastapi.responses import RedirectResponse
import gradio as gr
import requests
from typing import List
import torch
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from transformers import AutoProcessor

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))

from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
    process_images,
    process_queries,
)

app = FastAPI()

# Load model
model_name = "vidore/colpali"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
    "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval()

model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token = token)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
    model.to(device)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))

# In-memory storage
ds = []
images = []

@app.post("/index")
def index(files: List[UploadFile] = File(...)):
    global ds, images
    images = []
    ds = []
    for file in files:
        content = file.read()
        pdf_image_list = convert_from_path(io.BytesIO(content))
        images.extend(pdf_image_list)
    
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )
    for batch_doc in dataloader:
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    
    return {"message": f"Uploaded and converted {len(images)} pages"}

@app.post("/search")
def search(query: str, k: int):
    qs = []
    with torch.no_grad():
        batch_query = process_queries(processor, [query], mock_image)
        batch_query = {k: v.to(device) for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)

    top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]

    results = [{"page": idx, "image": "image_placeholder"} for idx in top_k_indices]

    return {"results": results}

# Rediriger la racine vers /docs
@app.get("/")
def read_root():
    return RedirectResponse(url="/docs")