add BERT model
Browse files- app.py +5 -14
- phoBERT.py +79 -0
- phoBertModel.pth +3 -0
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -11,9 +11,10 @@ import pandas as pd
|
|
| 11 |
import plotly.express as px
|
| 12 |
import keras
|
| 13 |
|
| 14 |
-
|
| 15 |
from underthesea import word_tokenize
|
| 16 |
|
|
|
|
|
|
|
| 17 |
#Load tokenizer
|
| 18 |
fp = Path(__file__).with_name('tokenizer.pkl')
|
| 19 |
with open(fp,mode="rb") as f:
|
|
@@ -81,26 +82,16 @@ def judge(x):
|
|
| 81 |
|
| 82 |
lstm_pred = LSTM_predict(x)
|
| 83 |
gru_pred = GRU_predict(x)
|
| 84 |
-
|
| 85 |
#print(result)
|
| 86 |
|
| 87 |
return_result = 'Result'
|
| 88 |
result_lstm = np.round(lstm_pred, 2)
|
| 89 |
result_gru = np.round(gru_pred, 2)
|
|
|
|
| 90 |
for i in range(6):
|
| 91 |
-
result.append((result_lstm[i]+result_gru[i])/
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
#print(final_result)
|
| 96 |
-
return_result += '\nM么 h矛nh LSTM\n'
|
| 97 |
-
return_result += f"{result_lstm}\n"
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return_result += '\nM么 h矛nh GRU\n'
|
| 101 |
-
return_result += f"{result_gru}\n"
|
| 102 |
-
|
| 103 |
-
|
| 104 |
return (result)
|
| 105 |
|
| 106 |
|
|
|
|
| 11 |
import plotly.express as px
|
| 12 |
import keras
|
| 13 |
|
|
|
|
| 14 |
from underthesea import word_tokenize
|
| 15 |
|
| 16 |
+
from phoBERT import BERT_predict
|
| 17 |
+
|
| 18 |
#Load tokenizer
|
| 19 |
fp = Path(__file__).with_name('tokenizer.pkl')
|
| 20 |
with open(fp,mode="rb") as f:
|
|
|
|
| 82 |
|
| 83 |
lstm_pred = LSTM_predict(x)
|
| 84 |
gru_pred = GRU_predict(x)
|
| 85 |
+
bert_pred = BERT_predict(x)
|
| 86 |
#print(result)
|
| 87 |
|
| 88 |
return_result = 'Result'
|
| 89 |
result_lstm = np.round(lstm_pred, 2)
|
| 90 |
result_gru = np.round(gru_pred, 2)
|
| 91 |
+
result_bert = np.round(bert_pred, 2)
|
| 92 |
for i in range(6):
|
| 93 |
+
result.append((result_lstm[i]+result_gru[i]+result_bert[i])/3)
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
return (result)
|
| 96 |
|
| 97 |
|
phoBERT.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModel, AutoTokenizer
|
| 3 |
+
from underthesea import word_tokenize
|
| 4 |
+
|
| 5 |
+
phobert = AutoModel.from_pretrained("vinai/phobert-base")
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
|
| 7 |
+
|
| 8 |
+
class PhoBertModel(torch.nn.Module):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super(PhoBertModel, self).__init__()
|
| 11 |
+
self.bert = phobert
|
| 12 |
+
self.pre_classifier = torch.nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size)
|
| 13 |
+
self.dropout = torch.nn.Dropout(0.1)
|
| 14 |
+
self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 6)
|
| 15 |
+
|
| 16 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 17 |
+
hidden_state, output_1 = self.bert(
|
| 18 |
+
input_ids = input_ids,
|
| 19 |
+
attention_mask=attention_mask,
|
| 20 |
+
return_dict = False
|
| 21 |
+
)
|
| 22 |
+
pooler = self.pre_classifier(output_1)
|
| 23 |
+
activation_1 = torch.nn.Tanh()(pooler)
|
| 24 |
+
|
| 25 |
+
drop = self.dropout(activation_1)
|
| 26 |
+
|
| 27 |
+
output_2 = self.classifier(drop)
|
| 28 |
+
# activation_2 = torch.nn.Tanh()(output_2)
|
| 29 |
+
|
| 30 |
+
output = torch.nn.Sigmoid()(output_2)
|
| 31 |
+
return output
|
| 32 |
+
|
| 33 |
+
def getModel():
|
| 34 |
+
model = torch.load('phoBertModel.pth', map_location=torch.device('cpu'))
|
| 35 |
+
model.eval()
|
| 36 |
+
return model
|
| 37 |
+
|
| 38 |
+
model = getModel()
|
| 39 |
+
|
| 40 |
+
def tokenize(data):
|
| 41 |
+
|
| 42 |
+
max_length = 200
|
| 43 |
+
|
| 44 |
+
for line in data:
|
| 45 |
+
|
| 46 |
+
token = tokenizer.encode_plus(
|
| 47 |
+
line,
|
| 48 |
+
max_length=200,
|
| 49 |
+
add_special_tokens=False,
|
| 50 |
+
pad_to_max_length=True
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
ids = torch.tensor([token['input_ids']])
|
| 54 |
+
mask = torch.tensor([token['attention_mask']])
|
| 55 |
+
token_type_ids = torch.tensor([token['token_type_ids']])
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
output = {
|
| 59 |
+
'ids': ids,
|
| 60 |
+
'mask': mask,
|
| 61 |
+
'token_type_ids': token_type_ids,
|
| 62 |
+
}
|
| 63 |
+
#outputs.append(output)
|
| 64 |
+
|
| 65 |
+
return output
|
| 66 |
+
|
| 67 |
+
def BERT_predict(text):
|
| 68 |
+
text = word_tokenize(text)
|
| 69 |
+
text = [text]
|
| 70 |
+
token = tokenize(text)
|
| 71 |
+
|
| 72 |
+
ids = token['ids']
|
| 73 |
+
mask = token['mask']
|
| 74 |
+
token_type_ids = token['token_type_ids']
|
| 75 |
+
|
| 76 |
+
result = model(ids, mask, token_type_ids)
|
| 77 |
+
print(result)
|
| 78 |
+
return result.tolist()[0]
|
| 79 |
+
|
phoBertModel.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d5fca9d837d05b1e8330798e32a59b5200bf677d5cf2f178727dcd131c86230b
|
| 3 |
+
size 542499629
|
requirements.txt
CHANGED
|
@@ -7,4 +7,6 @@ pathlib
|
|
| 7 |
plotly
|
| 8 |
pandas
|
| 9 |
keras==2.15.0
|
| 10 |
-
underthesea
|
|
|
|
|
|
|
|
|
| 7 |
plotly
|
| 8 |
pandas
|
| 9 |
keras==2.15.0
|
| 10 |
+
underthesea
|
| 11 |
+
torch
|
| 12 |
+
transformers
|