Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -53,18 +53,24 @@ def upload_file_fn(
|
|
53 |
print(e)
|
54 |
gr.Error("Read the file failed. Please check the data format.")
|
55 |
gr.Error(str(e))
|
56 |
-
return None
|
57 |
|
58 |
if len(documents) < 3:
|
59 |
gr.Error("Please upload more than 3 documents.")
|
60 |
-
return None
|
61 |
|
62 |
gr.Info(f"Upload {len(documents)} documents.")
|
63 |
-
if len(documents) >
|
64 |
-
gr.Info(f"Cut uploaded documents to
|
65 |
-
documents = documents[:
|
66 |
|
67 |
-
documents_embeddings = model.encode(documents, show_progress_bar=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
document_index = create_index(documents_embeddings, use_gpu=False)
|
70 |
|
@@ -72,13 +78,12 @@ def upload_file_fn(
|
|
72 |
torch.cuda.empty_cache()
|
73 |
torch.cuda.ipc_collect()
|
74 |
|
75 |
-
print("upload is OK")
|
76 |
document_state = {"document_data": document_data, "document_index": document_index}
|
77 |
-
return document_state,
|
78 |
|
79 |
|
80 |
def clear_file_fn():
|
81 |
-
return None
|
82 |
|
83 |
|
84 |
def retrieve_document_fn(question, document_states, instruct):
|
@@ -87,12 +92,11 @@ def retrieve_document_fn(question, document_states, instruct):
|
|
87 |
if document_states is None:
|
88 |
gr.Warning("Please upload documents first!")
|
89 |
return [None for i in range(num_retrieval_doc)] + [None]
|
90 |
-
|
91 |
-
print(document_states)
|
92 |
document_data, document_index = document_states["document_data"], document_states["document_index"]
|
93 |
|
94 |
question_embedding = model.encode([str(instruct) + str(question)])
|
95 |
-
batch_scores, batch_inxs = document_index.search(question_embedding, k=
|
96 |
|
97 |
answers = [document_data[i]["text"] for i in batch_inxs[0][:num_retrieval_doc]]
|
98 |
return answers[0], answers[1], answers[2], document_states
|
@@ -101,7 +105,10 @@ def retrieve_document_fn(question, document_states, instruct):
|
|
101 |
def main(args):
|
102 |
global model
|
103 |
|
104 |
-
model = SentenceTransformer(
|
|
|
|
|
|
|
105 |
|
106 |
document_state = gr.State()
|
107 |
|
@@ -117,24 +124,25 @@ def main(args):
|
|
117 |
doc_files_box = gr.File(label="Upload Documents", file_types=[".json"], file_count="single")
|
118 |
retrieval_interface = gr.Interface(
|
119 |
fn=retrieve_document_fn,
|
120 |
-
inputs=["
|
121 |
outputs=[gr.Text(label="Recall-1"), gr.Text(label="Recall-2"), gr.Text(label="Recall-3"), gr.State()],
|
122 |
-
additional_inputs=[gr.Textbox("Instruct: Given a query, retrieve documents that answer the query. \n Query: ", label="Instruct of Query")],
|
123 |
concurrency_limit=1,
|
124 |
)
|
|
|
125 |
|
126 |
|
127 |
doc_files_box.upload(
|
128 |
upload_file_fn,
|
129 |
[doc_files_box],
|
130 |
-
[document_state],
|
131 |
queue=True,
|
132 |
trigger_mode="once"
|
133 |
)
|
134 |
doc_files_box.clear(
|
135 |
clear_file_fn,
|
136 |
None,
|
137 |
-
[document_state],
|
138 |
queue=True,
|
139 |
trigger_mode="once"
|
140 |
)
|
@@ -145,6 +153,7 @@ if __name__ == "__main__":
|
|
145 |
parser = argparse.ArgumentParser()
|
146 |
parser.add_argument("--model_name_or_path", type=str, default="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
147 |
# parser.add_argument("--model_name_or_path", type=str, default="/raid/hxs/Checkpoints/huggingface_models/bge-base-en-v1.5")
|
|
|
148 |
|
149 |
args = parser.parse_args()
|
150 |
main(args)
|
|
|
53 |
print(e)
|
54 |
gr.Error("Read the file failed. Please check the data format.")
|
55 |
gr.Error(str(e))
|
56 |
+
return None, gr.update(interactive=False)
|
57 |
|
58 |
if len(documents) < 3:
|
59 |
gr.Error("Please upload more than 3 documents.")
|
60 |
+
return None, gr.update(interactive=False)
|
61 |
|
62 |
gr.Info(f"Upload {len(documents)} documents.")
|
63 |
+
if len(documents) > 1000:
|
64 |
+
gr.Info(f"Cut uploaded documents to 1000 due to the computation resource.")
|
65 |
+
documents = documents[: 1000]
|
66 |
|
67 |
+
# documents_embeddings = model.encode(documents, show_progress_bar=True)
|
68 |
+
documents_embeddings = []
|
69 |
+
batch_size = 8
|
70 |
+
for i in tqdm(range(0, len(documents), batch_size)):
|
71 |
+
batch_documents = documents[i: i+batch_size]
|
72 |
+
batch_embeddings = model.encode(batch_documents, show_progress_bar=True)
|
73 |
+
documents_embeddings.extend(batch_embeddings)
|
74 |
|
75 |
document_index = create_index(documents_embeddings, use_gpu=False)
|
76 |
|
|
|
78 |
torch.cuda.empty_cache()
|
79 |
torch.cuda.ipc_collect()
|
80 |
|
|
|
81 |
document_state = {"document_data": document_data, "document_index": document_index}
|
82 |
+
return document_state, gr.update(interactive=True)
|
83 |
|
84 |
|
85 |
def clear_file_fn():
|
86 |
+
return None, gr.update(interactive=True)
|
87 |
|
88 |
|
89 |
def retrieve_document_fn(question, document_states, instruct):
|
|
|
92 |
if document_states is None:
|
93 |
gr.Warning("Please upload documents first!")
|
94 |
return [None for i in range(num_retrieval_doc)] + [None]
|
95 |
+
|
|
|
96 |
document_data, document_index = document_states["document_data"], document_states["document_index"]
|
97 |
|
98 |
question_embedding = model.encode([str(instruct) + str(question)])
|
99 |
+
batch_scores, batch_inxs = document_index.search(question_embedding, k=min(len(document_data), 150))
|
100 |
|
101 |
answers = [document_data[i]["text"] for i in batch_inxs[0][:num_retrieval_doc]]
|
102 |
return answers[0], answers[1], answers[2], document_states
|
|
|
105 |
def main(args):
|
106 |
global model
|
107 |
|
108 |
+
model = SentenceTransformer(
|
109 |
+
args.model_name_or_path,
|
110 |
+
revision=args.revision,
|
111 |
+
backend="openvino")
|
112 |
|
113 |
document_state = gr.State()
|
114 |
|
|
|
124 |
doc_files_box = gr.File(label="Upload Documents", file_types=[".json"], file_count="single")
|
125 |
retrieval_interface = gr.Interface(
|
126 |
fn=retrieve_document_fn,
|
127 |
+
inputs=[gr.Textbox(label="Query"), document_state],
|
128 |
outputs=[gr.Text(label="Recall-1"), gr.Text(label="Recall-2"), gr.Text(label="Recall-3"), gr.State()],
|
129 |
+
additional_inputs=[gr.Textbox("Instruct: Given a query, retrieve documents that answer the query. \n Query: ", label="Instruct of Query", lines=2)],
|
130 |
concurrency_limit=1,
|
131 |
)
|
132 |
+
# retrieval_interface.input_components[0] = gr.update(interactive=False)
|
133 |
|
134 |
|
135 |
doc_files_box.upload(
|
136 |
upload_file_fn,
|
137 |
[doc_files_box],
|
138 |
+
[document_state, retrieval_interface.input_components[0]],
|
139 |
queue=True,
|
140 |
trigger_mode="once"
|
141 |
)
|
142 |
doc_files_box.clear(
|
143 |
clear_file_fn,
|
144 |
None,
|
145 |
+
[document_state, retrieval_interface.input_components[0]],
|
146 |
queue=True,
|
147 |
trigger_mode="once"
|
148 |
)
|
|
|
153 |
parser = argparse.ArgumentParser()
|
154 |
parser.add_argument("--model_name_or_path", type=str, default="HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5")
|
155 |
# parser.add_argument("--model_name_or_path", type=str, default="/raid/hxs/Checkpoints/huggingface_models/bge-base-en-v1.5")
|
156 |
+
parser.add_argument("--revision", type=str, default="refs/pr/2")
|
157 |
|
158 |
args = parser.parse_args()
|
159 |
main(args)
|