File size: 3,763 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import copy
import errno
import inspect
import numpy as np
import os
import sys

import torch

import pdb


class LoggerOutput(object):
    def __init__(self, fpath=None):
        self.console = sys.stdout
        self.file = None
        if fpath is not None:
            self.mkdir_if_missing(os.path.dirname(fpath))
            self.file = open(fpath, 'w')

    def __del__(self):
        self.close()

    def __enter__(self):
        pass

    def __exit__(self, *args):
        self.close()

    def write(self, msg):
        self.console.write(msg)
        if self.file is not None:
            self.file.write(msg)

    def flush(self):
        self.console.flush()
        if self.file is not None:
            self.file.flush()
            os.fsync(self.file.fileno())

    def close(self):
        self.console.close()
        if self.file is not None:
            self.file.close()

    def mkdir_if_missing(self, dir_path):
        try:
            os.makedirs(dir_path)
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.initialized = False
        self.val = None
        self.avg = None
        self.sum = None
        self.count = None

    def initialize(self, val, weight):
        self.val = val
        self.avg = val
        self.sum = val*weight
        self.count = weight
        self.initialized = True

    def update(self, val, weight=1):
        val = np.asarray(val)
        if not self.initialized:
            self.initialize(val, weight)
        else:
            self.add(val, weight)

    def add(self, val, weight):
        self.val = val
        self.sum += val * weight
        self.count += weight
        self.avg = self.sum / self.count

    def value(self):
        if self.val is None:
            return 0.
        else:
            return self.val.tolist()

    def average(self):
        if self.avg is None:
            return 0.
        else:
            return self.avg.tolist()


class Struct:
  def __init__(self, *dicts, **fields):
    for d in dicts:
      for k, v in d.iteritems():
        setattr(self, k, v)
    self.__dict__.update(fields)

  def to_dict(self):
    return {a: getattr(self, a) for a in self.attrs()}

  def attrs(self):
    #return sorted(set(dir(self)) - set(dir(Struct)))
    xs = set(dir(self)) - set(dir(Struct))
    xs = [x for x in xs if ((not (hasattr(self.__class__, x) and isinstance(getattr(self.__class__, x), property))) \
        and (not inspect.ismethod(getattr(self, x))))]
    return sorted(xs)

  def updated(self, other_struct_=None, **kwargs):
    s = copy.deepcopy(self)
    if other_struct_ is not None:
      s.__dict__.update(other_struct_.to_dict())
    s.__dict__.update(kwargs)
    return s

  def copy(self):
    return copy.deepcopy(self)

  def __str__(self):
    attrs = ', '.join('%s=%s' % (a, getattr(self, a)) for a in self.attrs())
    return 'Struct(%s)' % attrs


class Params(Struct):
  def __init__(self, **kwargs):
    self.__dict__.update(kwargs)


def normalize_rms(samples, desired_rms=0.1, eps=1e-4):
  rms = torch.max(torch.tensor(eps), torch.sqrt(
      torch.mean(samples**2, dim=1)).float())
  samples = samples * desired_rms / rms.unsqueeze(1)
  return samples


def normalize_rms_np(samples, desired_rms=0.1, eps=1e-4):
  rms = np.maximum(eps, np.sqrt(np.mean(samples**2, 1)))
  samples = samples * (desired_rms / rms)
  return samples


def angle(real, imag): 
  return torch.atan2(imag, real)


def atleast_2d_col(x):
  x = np.asarray(x)
  if np.ndim(x) == 0:
    return x[np.newaxis, np.newaxis]
  if np.ndim(x) == 1:
    return x[:, np.newaxis]
  else:
    return x