Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,243 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import numpy as np
import torch
import torchaudio.functional
import torchaudio
from . import utils
import pdb
def stft_frame_length(pr): return int(pr.frame_length_ms * pr.samp_sr * 0.001)
def stft_frame_step(pr): return int(pr.frame_step_ms * pr.samp_sr * 0.001)
def stft_num_fft(pr): return int(2**np.ceil(np.log2(stft_frame_length(pr))))
def log10(x): return torch.log(x)/torch.log(torch.tensor(10.))
def db_from_amp(x, cuda=False):
if cuda:
return 20. * log10(torch.max(torch.tensor(1e-5).to('cuda'), x.float()))
else:
return 20. * log10(torch.max(torch.tensor(1e-5), x.float()))
def amp_from_db(x):
return torch.pow(10., x / 20.)
def norm_range(x, min_val, max_val):
return 2.*(x - min_val)/float(max_val - min_val) - 1.
def unnorm_range(y, min_val, max_val):
return 0.5*float(max_val - min_val) * (y + 1) + min_val
def normalize_spec(spec, pr):
return norm_range(spec, pr.spec_min, pr.spec_max)
def unnormalize_spec(spec, pr):
return unnorm_range(spec, pr.spec_min, pr.spec_max)
def normalize_phase(phase, pr):
return norm_range(phase, -np.pi, np.pi)
def unnormalize_phase(phase, pr):
return unnorm_range(phase, -np.pi, np.pi)
def normalize_ims(im):
if type(im) == type(np.array([])):
im = im.astype('float32')
else:
im = im.float()
return -1. + 2. * im
def stft(samples, pr, cuda=False):
spec_complex = torch.stft(
samples,
stft_num_fft(pr),
hop_length=stft_frame_step(pr),
win_length=stft_frame_length(pr)).transpose(1,2)
real = spec_complex[..., 0]
imag = spec_complex[..., 1]
mag = torch.sqrt((real**2) + (imag**2))
phase = utils.angle(real, imag)
if pr.log_spec:
mag = db_from_amp(mag, cuda=cuda)
return mag, phase
def make_complex(mag, phase):
return torch.cat(((mag * torch.cos(phase)).unsqueeze(-1), (mag * torch.sin(phase)).unsqueeze(-1)), -1)
def istft(mag, phase, pr):
if pr.log_spec:
mag = amp_from_db(mag)
# print(make_complex(mag, phase).shape)
samples = torchaudio.functional.istft(
make_complex(mag, phase).transpose(1,2),
stft_num_fft(pr),
hop_length=stft_frame_step(pr),
win_length=stft_frame_length(pr))
return samples
def aud2spec(sample, pr, stereo=False, norm=False, cuda=True):
sample = sample[:, :pr.sample_len]
spec, phase = stft(sample.transpose(1,2).reshape((sample.shape[0]*2, -1)), pr, cuda=cuda)
spec = spec.reshape(sample.shape[0], 2, pr.spec_len, -1)
phase = phase.reshape(sample.shape[0], 2, pr.spec_len, -1)
return spec, phase
def mix_sounds(samples0, pr, samples1=None, cuda=False, dominant=False, noise_ratio=0):
# pdb.set_trace()
samples0 = utils.normalize_rms(samples0, pr.input_rms)
if samples1 is not None:
samples1 = utils.normalize_rms(samples1, pr.input_rms)
if dominant:
samples0 = samples0[:, :pr.sample_len]
samples1 = samples1[:, :pr.sample_len] * noise_ratio
else:
samples0 = samples0[:, :pr.sample_len]
samples1 = samples1[:, :pr.sample_len]
samples_mix = (samples0 + samples1)
if cuda:
samples0 = samples0.to('cuda')
samples1 = samples1.to('cuda')
samples_mix = samples_mix.to('cuda')
spec_mix, phase_mix = stft(samples_mix, pr, cuda=cuda)
spec0, phase0 = stft(samples0, pr, cuda=cuda)
spec1, phase1 = stft(samples1, pr, cuda=cuda)
spec_mix = spec_mix[:, :pr.spec_len]
phase_mix = phase_mix[:, :pr.spec_len]
spec0 = spec0[:, :pr.spec_len]
spec1 = spec1[:, :pr.spec_len]
phase0 = phase0[:, :pr.spec_len]
phase1 = phase1[:, :pr.spec_len]
return utils.Struct(
samples=samples_mix.float(),
phase=phase_mix.float(),
spec=spec_mix.float(),
sample_parts=[samples0, samples1],
spec_parts=[spec0.float(), spec1.float()],
phase_parts=[phase0.float(), phase1.float()])
def pit_loss(pred_spec_fg, pred_spec_bg, snd, pr, cuda=True, vis=False):
# if pr.norm_spec:
def ns(x): return normalize_spec(x, pr)
# else:
# def ns(x): return x
if pr.norm:
gts_ = [[ns(snd.spec_parts[0]), None],
[ns(snd.spec_parts[1]), None]]
preds = [[ns(pred_spec_fg), None],
[ns(pred_spec_bg), None]]
else:
gts_ = [[snd.spec_parts[0], None],
[snd.spec_parts[1], None]]
preds = [[pred_spec_fg, None],
[pred_spec_bg, None]]
def l1(x, y): return torch.mean(torch.abs(x - y), (1, 2))
losses = []
for i in range(2):
gt = [gts_[i % 2], gts_[(i+1) % 2]]
fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])
bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])
losses.append(fg_spec + bg_spec)
losses = torch.cat([x.unsqueeze(0) for x in losses], dim=0)
if vis:
print(losses)
loss_val = torch.min(losses, dim=0)
if vis:
print(loss_val[1])
loss = torch.mean(loss_val[0])
return loss
def diff_loss(spec_diff, phase_diff, snd, pr, device, norm=False, vis=False):
def ns(x): return normalize_spec(x, pr)
def np(x): return normalize_phase(x, pr)
criterion = torch.nn.L1Loss()
gt_spec_diff = snd.spec_diff
gt_phase_diff = snd.phase_diff
criterion = criterion.to(device)
if norm:
gt_spec_diff = ns(gt_spec_diff)
gt_phase_diff = np(gt_phase_diff)
pred_spec_diff = ns(spec_diff)
pred_phase_diff = np(phase_diff)
else:
pred_spec_diff = spec_diff
pred_phase_diff = phase_diff
spec_loss = criterion(pred_spec_diff, gt_spec_diff)
phase_loss = criterion(pred_phase_diff, gt_phase_diff)
loss = pr.l1_weight * spec_loss + pr.phase_weight * phase_loss
if vis:
print(loss)
return loss
# def pit_loss(out, snd, pr, cuda=False, vis=False):
# def ns(x): return normalize_spec(x, pr)
# def np(x): return normalize_phase(x, pr)
# if cuda:
# snd['spec_part0'] = snd['spec_part0'].to('cuda')
# snd['phase_part0'] = snd['phase_part0'].to('cuda')
# snd['spec_part1'] = snd['spec_part1'].to('cuda')
# snd['phase_part1'] = snd['phase_part1'].to('cuda')
# # gts_ = [[ns(snd['spec_part0'][:, 0, :, :]), np(snd['phase_part0'][:, 0, :, :])],
# # [ns(snd['spec_part1'][:, 0, :, :]), np(snd['phase_part1'][:, 0, :, :])]]
# gts_ = [[ns(snd.spec_parts[0]), np(snd.phase_parts[0])],
# [ns(snd.spec_parts[1]), np(snd.phase_parts[1])]]
# preds = [[ns(out.pred_spec_fg), np(out.pred_phase_fg)],
# [ns(out.pred_spec_bg), np(out.pred_phase_bg)]]
# def l1(x, y): return torch.mean(torch.abs(x - y), (1, 2))
# losses = []
# for i in range(2):
# gt = [gts_[i % 2], gts_[(i+1) % 2]]
# # print 'preds[0][0] shape =', shape(preds[0][0])
# # fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])
# # fg_phase = pr.phase_weight * l1(preds[0][1], gt[0][1])
# # bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])
# # bg_phase = pr.phase_weight * l1(preds[1][1], gt[1][1])
# # losses.append(fg_spec + fg_phase + bg_spec + bg_phase)
# fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])
# bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])
# losses.append(fg_spec + bg_spec)
# # pdb.set_trace()
# # pdb.set_trace()
# losses = torch.cat([x.unsqueeze(0) for x in losses], dim=0)
# if vis:
# print(losses)
# loss_val = torch.min(losses, dim=0)
# if vis:
# print(loss_val[1])
# loss = torch.mean(loss_val[0])
# return loss
# def stereo_mel()
def audio_stft(stft, audio, pr):
N, C, A = audio.size()
audio = audio.view(N * C, A)
spec = stft(audio)
spec = spec.transpose(-1, -2)
spec = db_from_amp(spec, cuda=True)
spec = normalize_spec(spec, pr)
_, T, F = spec.size()
spec = spec.view(N, C, T, F)
return spec
def normalize_audio(samples, desired_rms=0.1, eps=1e-4):
# print(np.mean(samples**2))
rms = np.maximum(eps, np.sqrt(np.mean(samples**2)))
samples = samples * (desired_rms / rms)
return samples |