File size: 8,243 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np

import torch
import torchaudio.functional
import torchaudio
from . import utils

import pdb


def stft_frame_length(pr): return int(pr.frame_length_ms * pr.samp_sr * 0.001)

def stft_frame_step(pr): return int(pr.frame_step_ms * pr.samp_sr * 0.001)


def stft_num_fft(pr): return int(2**np.ceil(np.log2(stft_frame_length(pr))))

def log10(x): return torch.log(x)/torch.log(torch.tensor(10.))


def db_from_amp(x, cuda=False):
    if cuda: 
        return 20. * log10(torch.max(torch.tensor(1e-5).to('cuda'), x.float()))
    else: 
        return 20. * log10(torch.max(torch.tensor(1e-5), x.float()))


def amp_from_db(x):
    return torch.pow(10., x / 20.)


def norm_range(x, min_val, max_val):
    return 2.*(x - min_val)/float(max_val - min_val) - 1.

def unnorm_range(y, min_val, max_val):
  return 0.5*float(max_val - min_val) * (y + 1) + min_val

def normalize_spec(spec, pr):
    return norm_range(spec, pr.spec_min, pr.spec_max)


def unnormalize_spec(spec, pr):
    return unnorm_range(spec, pr.spec_min, pr.spec_max)


def normalize_phase(phase, pr):
    return norm_range(phase, -np.pi, np.pi)


def unnormalize_phase(phase, pr):
    return unnorm_range(phase, -np.pi, np.pi)


def normalize_ims(im): 
    if type(im) == type(np.array([])): 
        im = im.astype('float32')
    else: 
        im = im.float()
    return -1. + 2. * im


def stft(samples, pr, cuda=False):
    spec_complex = torch.stft(
        samples, 
        stft_num_fft(pr),
        hop_length=stft_frame_step(pr), 
        win_length=stft_frame_length(pr)).transpose(1,2)

    real = spec_complex[..., 0]
    imag = spec_complex[..., 1]
    mag = torch.sqrt((real**2) + (imag**2))
    phase = utils.angle(real, imag)
    if pr.log_spec:
        mag = db_from_amp(mag, cuda=cuda)
    return mag, phase


def make_complex(mag, phase):
    return torch.cat(((mag * torch.cos(phase)).unsqueeze(-1), (mag * torch.sin(phase)).unsqueeze(-1)), -1)


def istft(mag, phase, pr):
    if pr.log_spec:
        mag = amp_from_db(mag)
    # print(make_complex(mag, phase).shape)
    samples = torchaudio.functional.istft(
        make_complex(mag, phase).transpose(1,2),
        stft_num_fft(pr),
        hop_length=stft_frame_step(pr),
        win_length=stft_frame_length(pr))
    return samples



def aud2spec(sample, pr, stereo=False, norm=False, cuda=True): 
    sample = sample[:, :pr.sample_len]
    spec, phase = stft(sample.transpose(1,2).reshape((sample.shape[0]*2, -1)), pr, cuda=cuda)
    spec = spec.reshape(sample.shape[0], 2, pr.spec_len, -1)
    phase = phase.reshape(sample.shape[0], 2, pr.spec_len, -1)
    return spec, phase


def mix_sounds(samples0, pr, samples1=None, cuda=False, dominant=False, noise_ratio=0):
    # pdb.set_trace()
    samples0 = utils.normalize_rms(samples0, pr.input_rms)
    if samples1 is not None:
        samples1 = utils.normalize_rms(samples1, pr.input_rms)

    if dominant: 
        samples0 = samples0[:, :pr.sample_len]
        samples1 = samples1[:, :pr.sample_len] * noise_ratio
    else: 
        samples0 = samples0[:, :pr.sample_len]
        samples1 = samples1[:, :pr.sample_len]
    
    samples_mix = (samples0 + samples1)
    if cuda: 
        samples0 = samples0.to('cuda')
        samples1 = samples1.to('cuda')
        samples_mix = samples_mix.to('cuda')

    spec_mix, phase_mix = stft(samples_mix, pr, cuda=cuda)

    spec0, phase0 = stft(samples0, pr, cuda=cuda)
    spec1, phase1 = stft(samples1, pr, cuda=cuda)

    spec_mix = spec_mix[:, :pr.spec_len]
    phase_mix = phase_mix[:, :pr.spec_len]
    spec0 = spec0[:, :pr.spec_len]
    spec1 = spec1[:, :pr.spec_len]
    phase0 = phase0[:, :pr.spec_len]
    phase1 = phase1[:, :pr.spec_len]

    return utils.Struct(
        samples=samples_mix.float(),
        phase=phase_mix.float(),
        spec=spec_mix.float(),
        sample_parts=[samples0, samples1],
        spec_parts=[spec0.float(), spec1.float()],
        phase_parts=[phase0.float(), phase1.float()])


def pit_loss(pred_spec_fg, pred_spec_bg, snd, pr, cuda=True, vis=False):
    # if pr.norm_spec: 
    def ns(x): return normalize_spec(x, pr)
    # else: 
    #     def ns(x): return x
    if pr.norm:
        gts_ = [[ns(snd.spec_parts[0]), None],
                [ns(snd.spec_parts[1]), None]]
        preds = [[ns(pred_spec_fg), None],
                [ns(pred_spec_bg), None]]
    else:
        gts_ = [[snd.spec_parts[0], None],
                [snd.spec_parts[1], None]]
        preds = [[pred_spec_fg, None],
                [pred_spec_bg, None]]

    def l1(x, y): return torch.mean(torch.abs(x - y), (1, 2))
    losses = []
    for i in range(2):
        gt = [gts_[i % 2], gts_[(i+1) % 2]]
        fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])
        bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])
        losses.append(fg_spec + bg_spec)

    losses = torch.cat([x.unsqueeze(0) for x in losses], dim=0)
    if vis:
        print(losses)
    loss_val = torch.min(losses, dim=0)
    if vis:
        print(loss_val[1])
    loss = torch.mean(loss_val[0])

    return loss


def diff_loss(spec_diff, phase_diff, snd, pr, device, norm=False, vis=False):
    def ns(x): return normalize_spec(x, pr)
    def np(x): return normalize_phase(x, pr)
    criterion = torch.nn.L1Loss()
    
    gt_spec_diff = snd.spec_diff
    gt_phase_diff = snd.phase_diff
    criterion = criterion.to(device)

    if norm:
        gt_spec_diff = ns(gt_spec_diff)
        gt_phase_diff = np(gt_phase_diff)
        pred_spec_diff = ns(spec_diff)
        pred_phase_diff = np(phase_diff)
    else:
        pred_spec_diff = spec_diff
        pred_phase_diff = phase_diff

    spec_loss = criterion(pred_spec_diff, gt_spec_diff)
    phase_loss = criterion(pred_phase_diff, gt_phase_diff)
    loss = pr.l1_weight * spec_loss + pr.phase_weight * phase_loss
    if vis:
        print(loss)
    return loss

# def pit_loss(out, snd, pr, cuda=False, vis=False):
#     def ns(x): return normalize_spec(x, pr)
#     def np(x): return normalize_phase(x, pr)
#     if cuda: 
#         snd['spec_part0'] = snd['spec_part0'].to('cuda')
#         snd['phase_part0'] = snd['phase_part0'].to('cuda')
#         snd['spec_part1'] = snd['spec_part1'].to('cuda')
#         snd['phase_part1'] = snd['phase_part1'].to('cuda')
#     # gts_ = [[ns(snd['spec_part0'][:, 0, :, :]), np(snd['phase_part0'][:, 0, :, :])],
#     #         [ns(snd['spec_part1'][:, 0, :, :]), np(snd['phase_part1'][:, 0, :, :])]]
#     gts_ = [[ns(snd.spec_parts[0]), np(snd.phase_parts[0])],
#             [ns(snd.spec_parts[1]), np(snd.phase_parts[1])]]
#     preds = [[ns(out.pred_spec_fg), np(out.pred_phase_fg)],
#              [ns(out.pred_spec_bg), np(out.pred_phase_bg)]]
    
#     def l1(x, y): return torch.mean(torch.abs(x - y), (1, 2))
#     losses = []
#     for i in range(2):
#         gt = [gts_[i % 2], gts_[(i+1) % 2]]
#         #   print 'preds[0][0] shape =', shape(preds[0][0])
#         # fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])
#         # fg_phase = pr.phase_weight * l1(preds[0][1], gt[0][1])

#         # bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])
#         # bg_phase = pr.phase_weight * l1(preds[1][1], gt[1][1])

#         # losses.append(fg_spec + fg_phase + bg_spec + bg_phase)
#         fg_spec = pr.l1_weight * l1(preds[0][0], gt[0][0])

#         bg_spec = pr.l1_weight * l1(preds[1][0], gt[1][0])

#         losses.append(fg_spec + bg_spec)
#     # pdb.set_trace()
#     # pdb.set_trace()
#     losses = torch.cat([x.unsqueeze(0) for x in losses], dim=0)
#     if vis: 
#         print(losses)
#     loss_val = torch.min(losses, dim=0)
#     if vis: 
#         print(loss_val[1])
#     loss = torch.mean(loss_val[0])

#     return loss

# def stereo_mel()


def audio_stft(stft, audio, pr):
    N, C, A = audio.size()
    audio = audio.view(N * C, A)
    spec = stft(audio)
    spec = spec.transpose(-1, -2)
    spec = db_from_amp(spec, cuda=True)
    spec = normalize_spec(spec, pr)
    _, T, F = spec.size()
    spec = spec.view(N, C, T, F)
    return spec


def normalize_audio(samples, desired_rms=0.1, eps=1e-4):
    # print(np.mean(samples**2))
    rms = np.maximum(eps, np.sqrt(np.mean(samples**2)))
    samples = samples * (desired_rms / rms)
    return samples