File size: 4,762 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import copy
import numpy as np
import scipy.io.wavfile
import scipy.signal

from . import utils as ut

import pdb

def load_sound(wav_fname):
    rate, samples = scipy.io.wavfile.read(wav_fname)
    times = (1./rate) * np.arange(len(samples))
    return Sound(times, rate, samples)


class Sound:
    def __init__(self, times, rate, samples=None):
        # Allow Sound(samples, sr)
        if samples is None:
            samples = times
            times = None
        if samples.dtype == np.float32:
            samples = samples.astype('float64')

        self.rate = rate
        # self.samples = ut.atleast_2d_col(samples)
        self.samples = samples

        self.length = samples.shape[0]
        if times is None:
            self.times = np.arange(len(self.samples)) / float(self.rate)
        else:
            self.times = times

    def copy(self):
        return copy.deepcopy(self)

    def parts(self):
        return (self.times, self.rate, self.samples)

    def __getslice__(self, *args):
        return Sound(self.times.__getslice__(*args), self.rate,
                    self.samples.__getslice__(*args))

    def duration(self):
        return self.samples.shape[0] / float(self.rate)

    def normalized(self, check=True):
        if self.samples.dtype == np.double:
            assert (not check) or np.max(np.abs(self.samples)) <= 4.
            x = copy.deepcopy(self)
            x.samples = np.clip(x.samples, -1., 1.)
            return x
        else:
            s = copy.deepcopy(self)
            s.samples = np.array(s.samples, 'double') / np.iinfo(s.samples.dtype).max
            s.samples[s.samples < -1] = -1
            s.samples[s.samples > 1] = 1
            return s

    def unnormalized(self, dtype_name='int32'):
        s = self.normalized()
        inf = np.iinfo(np.dtype(dtype_name))
        samples = np.clip(s.samples, -1., 1.)
        samples = inf.max * samples
        samples = np.array(np.clip(samples, inf.min, inf.max), dtype_name)
        s.samples = samples
        return s

    def sample_from_time(self, t, bound=False):
        if bound:
            return min(max(0, int(np.round(t * self.rate))), self.samples.shape[0]-1)
        else:
            return int(np.round(t * self.rate))

    # st = sample_from_time

    def shift_zero(self):
        s = copy.deepcopy(self)
        s.times -= s.times[0]
        return s

    def select_channel(self, c):
        s = copy.deepcopy(self)
        s.samples = s.samples[:, c]
        return s

    def left_pad_silence(self, n):
        if n == 0:
            return self.shift_zero()
        else:
            if np.ndim(self.samples) == 1:
                samples = np.concatenate([[0] * n, self.samples])
            else:
                samples = np.vstack(
                [np.zeros((n, self.samples.shape[1]), self.samples.dtype), self.samples])
        return Sound(None, self.rate, samples)

    def right_pad_silence(self, n):
        if n == 0:
            return self.shift_zero()
        else:
            if np.ndim(self.samples) == 1:
                samples = np.concatenate([self.samples, [0] * n])
            else:
                samples = np.vstack([self.samples, np.zeros(
                (n, self.samples.shape[1]), self.samples.dtype)])
        return Sound(None, self.rate, samples)

    def pad_slice(self, s1, s2):
        assert s1 < self.samples.shape[0] and s2 >= 0
        s = self[max(0, s1): min(s2, self.samples.shape[0])]
        s = s.left_pad_silence(max(0, -s1))
        s = s.right_pad_silence(max(0, s2 - self.samples.shape[0]))
        return s

    def to_mono(self, force_copy= True):
        s = copy.deepcopy(self)
        s.samples = make_mono(s.samples)
        return s

    def slice_time(self, t1, t2):
        return self[self.st(t1): self.st(t2)]

    @property
    def nchannels(self):
        return 1 if np.ndim(self.samples) == 1 else self.samples.shape[1]

    def save(self, fname):
        s = self.unnormalized('int16')
        scipy.io.wavfile.write(fname, s.rate, s.samples.transpose())

    def resampled(self, new_rate, clip= True):
        if new_rate == self.rate:
            return copy.deepcopy(self)
        else:
        #assert self.samples.shape[1] == 1
            return Sound(None, new_rate, self.resample(self.samples, float(new_rate)/self.rate, clip= clip))

    def trim_to_size(self, n):
        return Sound(None, self.rate, self.samples[:n])

    def resample(self, signal, sc, clip = True, num_samples = None):
        n = int(round(signal.shape[0] * sc)) if num_samples is None else num_samples
        r = scipy.signal.resample(signal, n)
    
        if clip:
            r = np.clip(r, -1, 1)
        else: 
            r = r.astype(np.int16)
        return r