Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor
|
4 |
+
from qwen_omni_utils import process_mm_info
|
5 |
+
import soundfile as sf
|
6 |
+
import tempfile
|
7 |
+
import spaces
|
8 |
+
|
9 |
+
# Initialize the model and processor
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
|
12 |
+
|
13 |
+
model = Qwen2_5OmniModel.from_pretrained(
|
14 |
+
"Qwen/Qwen2.5-Omni-7B",
|
15 |
+
torch_dtype=torch_dtype,
|
16 |
+
device_map="auto",
|
17 |
+
enable_audio_output=True,
|
18 |
+
# attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
|
19 |
+
)
|
20 |
+
|
21 |
+
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
|
22 |
+
|
23 |
+
# System prompt
|
24 |
+
SYSTEM_PROMPT = {
|
25 |
+
"role": "system",
|
26 |
+
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
|
27 |
+
}
|
28 |
+
|
29 |
+
# Voice options
|
30 |
+
VOICE_OPTIONS = {
|
31 |
+
"Chelsie (Female)": "Chelsie",
|
32 |
+
"Ethan (Male)": "Ethan"
|
33 |
+
}
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def process_input(image, audio, video, text, chat_history, voice_type, enable_audio_output):
|
37 |
+
# Combine multimodal inputs
|
38 |
+
user_input = {
|
39 |
+
"text": text,
|
40 |
+
"image": image if image is not None else None,
|
41 |
+
"audio": audio if audio is not None else None,
|
42 |
+
"video": video if video is not None else None
|
43 |
+
}
|
44 |
+
|
45 |
+
# Prepare conversation history for model processing
|
46 |
+
conversation = [SYSTEM_PROMPT]
|
47 |
+
|
48 |
+
# Add previous chat history
|
49 |
+
if isinstance(chat_history, list):
|
50 |
+
for item in chat_history:
|
51 |
+
if isinstance(item, tuple) and len(item) == 2:
|
52 |
+
user_msg, bot_msg = item
|
53 |
+
conversation.append({"role": "user", "content": user_input_to_content(user_msg)})
|
54 |
+
conversation.append({"role": "assistant", "content": bot_msg})
|
55 |
+
else:
|
56 |
+
# Initialize chat history if it's not a list
|
57 |
+
chat_history = []
|
58 |
+
|
59 |
+
# Add current user input
|
60 |
+
conversation.append({"role": "user", "content": user_input_to_content(user_input)})
|
61 |
+
|
62 |
+
# Prepare for inference
|
63 |
+
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
64 |
+
audios, images, videos = process_mm_info(conversation, use_audio_in_video=True)
|
65 |
+
|
66 |
+
inputs = processor(
|
67 |
+
text=text,
|
68 |
+
audios=audios,
|
69 |
+
images=images,
|
70 |
+
videos=videos,
|
71 |
+
return_tensors="pt",
|
72 |
+
padding=True
|
73 |
+
)
|
74 |
+
inputs = inputs.to(model.device).to(model.dtype)
|
75 |
+
|
76 |
+
# Generate response
|
77 |
+
if enable_audio_output:
|
78 |
+
voice_type_value = VOICE_OPTIONS.get(voice_type, "Chelsie")
|
79 |
+
text_ids, audio = model.generate(
|
80 |
+
**inputs,
|
81 |
+
use_audio_in_video=True,
|
82 |
+
return_audio=True,
|
83 |
+
spk=voice_type_value
|
84 |
+
)
|
85 |
+
|
86 |
+
# Save audio to temporary file
|
87 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
88 |
+
sf.write(
|
89 |
+
tmp_file.name,
|
90 |
+
audio.reshape(-1).detach().cpu().numpy(),
|
91 |
+
samplerate=24000,
|
92 |
+
)
|
93 |
+
audio_path = tmp_file.name
|
94 |
+
else:
|
95 |
+
text_ids = model.generate(
|
96 |
+
**inputs,
|
97 |
+
use_audio_in_video=True,
|
98 |
+
return_audio=False
|
99 |
+
)
|
100 |
+
audio_path = None
|
101 |
+
|
102 |
+
# Decode text response
|
103 |
+
text_response = processor.batch_decode(
|
104 |
+
text_ids,
|
105 |
+
skip_special_tokens=True,
|
106 |
+
clean_up_tokenization_spaces=False
|
107 |
+
)[0]
|
108 |
+
|
109 |
+
# Clean up text response
|
110 |
+
text_response = text_response.strip()
|
111 |
+
|
112 |
+
# Format user message for chat history display
|
113 |
+
user_message_for_display = str(text) if text is not None else ""
|
114 |
+
if image is not None:
|
115 |
+
user_message_for_display = (user_message_for_display or "Image uploaded") + " [Image]"
|
116 |
+
if audio is not None:
|
117 |
+
user_message_for_display = (user_message_for_display or "Audio uploaded") + " [Audio]"
|
118 |
+
if video is not None:
|
119 |
+
user_message_for_display = (user_message_for_display or "Video uploaded") + " [Video]"
|
120 |
+
|
121 |
+
# If empty, provide a default message
|
122 |
+
if not user_message_for_display.strip():
|
123 |
+
user_message_for_display = "Multimodal input"
|
124 |
+
|
125 |
+
# Update chat history with properly formatted entries
|
126 |
+
if not isinstance(chat_history, list):
|
127 |
+
chat_history = []
|
128 |
+
chat_history.append((user_message_for_display, text_response))
|
129 |
+
|
130 |
+
# Prepare output
|
131 |
+
if enable_audio_output and audio_path:
|
132 |
+
return chat_history, text_response, audio_path
|
133 |
+
else:
|
134 |
+
return chat_history, text_response, None
|
135 |
+
|
136 |
+
def user_input_to_content(user_input):
|
137 |
+
if isinstance(user_input, str):
|
138 |
+
return user_input
|
139 |
+
elif isinstance(user_input, dict):
|
140 |
+
# Handle file uploads
|
141 |
+
content = []
|
142 |
+
if "text" in user_input and user_input["text"]:
|
143 |
+
content.append({"type": "text", "text": user_input["text"]})
|
144 |
+
if "image" in user_input and user_input["image"]:
|
145 |
+
content.append({"type": "image", "image": user_input["image"]})
|
146 |
+
if "audio" in user_input and user_input["audio"]:
|
147 |
+
content.append({"type": "audio", "audio": user_input["audio"]})
|
148 |
+
if "video" in user_input and user_input["video"]:
|
149 |
+
content.append({"type": "video", "video": user_input["video"]})
|
150 |
+
return content
|
151 |
+
return user_input
|
152 |
+
|
153 |
+
def create_demo():
|
154 |
+
with gr.Blocks(title="Qwen2.5-Omni Chat Demo", theme=gr.themes.Soft()) as demo:
|
155 |
+
gr.Markdown("# Qwen2.5-Omni Multimodal Chat Demo")
|
156 |
+
gr.Markdown("Experience the omni-modal capabilities of Qwen2.5-Omni through text, images, audio, and video interactions.")
|
157 |
+
|
158 |
+
# Hidden placeholder components for text-only input
|
159 |
+
placeholder_image = gr.Image(type="filepath", visible=False)
|
160 |
+
placeholder_audio = gr.Audio(type="filepath", visible=False)
|
161 |
+
placeholder_video = gr.Video(visible=False)
|
162 |
+
|
163 |
+
# Chat interface
|
164 |
+
with gr.Row():
|
165 |
+
with gr.Column(scale=3):
|
166 |
+
chatbot = gr.Chatbot(height=600)
|
167 |
+
with gr.Accordion("Advanced Options", open=False):
|
168 |
+
voice_type = gr.Dropdown(
|
169 |
+
choices=list(VOICE_OPTIONS.keys()),
|
170 |
+
value="Chelsie (Female)",
|
171 |
+
label="Voice Type"
|
172 |
+
)
|
173 |
+
enable_audio_output = gr.Checkbox(
|
174 |
+
value=True,
|
175 |
+
label="Enable Audio Output"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Multimodal input components
|
179 |
+
with gr.Tabs():
|
180 |
+
with gr.TabItem("Text Input"):
|
181 |
+
text_input = gr.Textbox(
|
182 |
+
placeholder="Type your message here...",
|
183 |
+
label="Text Input"
|
184 |
+
)
|
185 |
+
text_submit = gr.Button("Send Text")
|
186 |
+
|
187 |
+
with gr.TabItem("Multimodal Input"):
|
188 |
+
with gr.Row():
|
189 |
+
image_input = gr.Image(
|
190 |
+
type="filepath",
|
191 |
+
label="Upload Image"
|
192 |
+
)
|
193 |
+
audio_input = gr.Audio(
|
194 |
+
type="filepath",
|
195 |
+
label="Upload Audio"
|
196 |
+
)
|
197 |
+
with gr.Row():
|
198 |
+
video_input = gr.Video(
|
199 |
+
label="Upload Video"
|
200 |
+
)
|
201 |
+
additional_text = gr.Textbox(
|
202 |
+
placeholder="Additional text message...",
|
203 |
+
label="Additional Text"
|
204 |
+
)
|
205 |
+
multimodal_submit = gr.Button("Send Multimodal Input")
|
206 |
+
|
207 |
+
clear_button = gr.Button("Clear Chat")
|
208 |
+
|
209 |
+
with gr.Column(scale=1):
|
210 |
+
gr.Markdown("## Model Capabilities")
|
211 |
+
gr.Markdown("""
|
212 |
+
**Qwen2.5-Omni can:**
|
213 |
+
- Process and understand text
|
214 |
+
- Analyze images and answer questions about them
|
215 |
+
- Transcribe and understand audio
|
216 |
+
- Analyze video content (with or without audio)
|
217 |
+
- Generate natural speech responses
|
218 |
+
""")
|
219 |
+
|
220 |
+
gr.Markdown("### Example Prompts")
|
221 |
+
gr.Examples(
|
222 |
+
examples=[
|
223 |
+
["Describe what you see in this image", "image"],
|
224 |
+
["What is being said in this audio clip?", "audio"],
|
225 |
+
["What's happening in this video?", "video"],
|
226 |
+
["Explain Artificial Intelligence in simple terms", "text"],
|
227 |
+
["Generate a short story about a robot learning to play AlphaGo", "text"]
|
228 |
+
],
|
229 |
+
inputs=[text_input, gr.Textbox(visible=False)],
|
230 |
+
label="Text Examples"
|
231 |
+
)
|
232 |
+
|
233 |
+
audio_output = gr.Audio(
|
234 |
+
label="Model Speech Output",
|
235 |
+
visible=True,
|
236 |
+
autoplay=True
|
237 |
+
)
|
238 |
+
text_output = gr.Textbox(
|
239 |
+
label="Model Text Response",
|
240 |
+
interactive=False
|
241 |
+
)
|
242 |
+
|
243 |
+
# Text input handling
|
244 |
+
text_submit.click(
|
245 |
+
fn=lambda text: str(text) if text is not None else "",
|
246 |
+
inputs=text_input,
|
247 |
+
outputs=[chatbot],
|
248 |
+
queue=False
|
249 |
+
).then(
|
250 |
+
fn=process_input,
|
251 |
+
inputs=[placeholder_image, placeholder_audio, placeholder_video, text_input, chatbot, voice_type, enable_audio_output],
|
252 |
+
outputs=[chatbot, text_output, audio_output]
|
253 |
+
)
|
254 |
+
|
255 |
+
# Multimodal input handling
|
256 |
+
def prepare_multimodal_input(image, audio, video, text):
|
257 |
+
# Create a display message that indicates what was uploaded
|
258 |
+
display_message = str(text) if text is not None else ""
|
259 |
+
if image is not None:
|
260 |
+
display_message = (display_message + " " if display_message.strip() else "") + "[Image]"
|
261 |
+
if audio is not None:
|
262 |
+
display_message = (display_message + " " if display_message.strip() else "") + "[Audio]"
|
263 |
+
if video is not None:
|
264 |
+
display_message = (display_message + " " if display_message.strip() else "") + "[Video]"
|
265 |
+
|
266 |
+
if not display_message.strip():
|
267 |
+
display_message = "Multimodal content"
|
268 |
+
|
269 |
+
return display_message
|
270 |
+
|
271 |
+
multimodal_submit.click(
|
272 |
+
fn=prepare_multimodal_input,
|
273 |
+
inputs=[image_input, audio_input, video_input, additional_text],
|
274 |
+
outputs=[chatbot],
|
275 |
+
queue=False
|
276 |
+
).then(
|
277 |
+
fn=process_input,
|
278 |
+
inputs=[image_input, audio_input, video_input, additional_text,
|
279 |
+
chatbot, voice_type, enable_audio_output],
|
280 |
+
outputs=[chatbot, text_output, audio_output]
|
281 |
+
)
|
282 |
+
|
283 |
+
# Clear chat
|
284 |
+
def clear_chat():
|
285 |
+
return [], None, None
|
286 |
+
|
287 |
+
clear_button.click(
|
288 |
+
fn=clear_chat,
|
289 |
+
outputs=[chatbot, text_output, audio_output]
|
290 |
+
)
|
291 |
+
|
292 |
+
# Update audio output visibility
|
293 |
+
def toggle_audio_output(enable_audio):
|
294 |
+
return gr.Audio(visible=enable_audio)
|
295 |
+
|
296 |
+
enable_audio_output.change(
|
297 |
+
fn=toggle_audio_output,
|
298 |
+
inputs=enable_audio_output,
|
299 |
+
outputs=audio_output
|
300 |
+
)
|
301 |
+
|
302 |
+
return demo
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
demo = create_demo()
|
306 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|