# ************************************************************************* # Copyright (2023) Bytedance Inc. # # Copyright (2023) DragDiffusion Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ************************************************************************* import os import numpy as np import pickle import sys sys.path.insert(0, '../') if __name__ == '__main__': all_category = [ 'art_work', 'land_scape', 'building_city_view', 'building_countryside_view', 'animals', 'human_head', 'human_upper_body', 'human_full_body', 'interior_design', 'other_objects', ] # assume root_dir and lora_dir are valid directory root_dir = 'drag_bench_data' num_samples, num_pair_points = 0, 0 for cat in all_category: file_dir = os.path.join(root_dir, cat) for sample_name in os.listdir(file_dir): if sample_name == '.DS_Store': continue sample_path = os.path.join(file_dir, sample_name) # load meta data with open(os.path.join(sample_path, 'meta_data.pkl'), 'rb') as f: meta_data = pickle.load(f) points = meta_data['points'] num_samples += 1 num_pair_points += len(points) // 2 print(num_samples) print(num_pair_points)