File size: 13,308 Bytes
8c8af64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# *************************************************************************
# Copyright (2023) Bytedance Inc.
#
# Copyright (2023) DragDiffusion Authors 
#
# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
#
#     http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
# *************************************************************************

import copy
import torch
import torch.nn.functional as F


def point_tracking(F0,
                   F1,
                   handle_points,
                   handle_points_init,
                   args):
    with torch.no_grad():
        _, _, max_r, max_c = F0.shape
        for i in range(len(handle_points)):
            pi0, pi = handle_points_init[i], handle_points[i]
            f0 = F0[:, :, int(pi0[0]), int(pi0[1])]

            r1, r2 = max(0,int(pi[0])-args.r_p), min(max_r,int(pi[0])+args.r_p+1)
            c1, c2 = max(0,int(pi[1])-args.r_p), min(max_c,int(pi[1])+args.r_p+1)
            F1_neighbor = F1[:, :, r1:r2, c1:c2]
            all_dist = (f0.unsqueeze(dim=-1).unsqueeze(dim=-1) - F1_neighbor).abs().sum(dim=1)
            all_dist = all_dist.squeeze(dim=0)
            row, col = divmod(all_dist.argmin().item(), all_dist.shape[-1])
            # handle_points[i][0] = pi[0] - args.r_p + row
            # handle_points[i][1] = pi[1] - args.r_p + col
            handle_points[i][0] = r1 + row
            handle_points[i][1] = c1 + col
        return handle_points

def check_handle_reach_target(handle_points,
                              target_points):
    # dist = (torch.cat(handle_points,dim=0) - torch.cat(target_points,dim=0)).norm(dim=-1)
    all_dist = list(map(lambda p,q: (p-q).norm(), handle_points, target_points))
    return (torch.tensor(all_dist) < 2.0).all()

# obtain the bilinear interpolated feature patch centered around (x, y) with radius r
def interpolate_feature_patch(feat,
                              y1,
                              y2,
                              x1,
                              x2):
    x1_floor = torch.floor(x1).long()
    x1_cell = x1_floor + 1
    dx = torch.floor(x2).long() - torch.floor(x1).long()

    y1_floor = torch.floor(y1).long()
    y1_cell = y1_floor + 1
    dy = torch.floor(y2).long() - torch.floor(y1).long()

    wa = (x1_cell.float() - x1) * (y1_cell.float() - y1)
    wb = (x1_cell.float() - x1) * (y1 - y1_floor.float())
    wc = (x1 - x1_floor.float()) * (y1_cell.float() - y1)
    wd = (x1 - x1_floor.float()) * (y1 - y1_floor.float())

    Ia = feat[:, :, y1_floor : y1_floor+dy, x1_floor : x1_floor+dx]
    Ib = feat[:, :, y1_cell : y1_cell+dy, x1_floor : x1_floor+dx]
    Ic = feat[:, :, y1_floor : y1_floor+dy, x1_cell : x1_cell+dx]
    Id = feat[:, :, y1_cell : y1_cell+dy, x1_cell : x1_cell+dx]

    return Ia * wa + Ib * wb + Ic * wc + Id * wd

def drag_diffusion_update(model,
                          init_code,
                          text_embeddings,
                          t,
                          handle_points,
                          target_points,
                          mask,
                          args):

    assert len(handle_points) == len(target_points), \
        "number of handle point must equals target points"
    if text_embeddings is None:
        text_embeddings = model.get_text_embeddings(args.prompt)

    # the init output feature of unet
    with torch.no_grad():
        unet_output, F0 = model.forward_unet_features(init_code, t,
            encoder_hidden_states=text_embeddings,
            layer_idx=args.unet_feature_idx, interp_res_h=args.sup_res_h, interp_res_w=args.sup_res_w)
        x_prev_0,_ = model.step(unet_output, t, init_code)
        # init_code_orig = copy.deepcopy(init_code)

    # prepare optimizable init_code and optimizer
    init_code.requires_grad_(True)
    optimizer = torch.optim.Adam([init_code], lr=args.lr)

    # prepare for point tracking and background regularization
    handle_points_init = copy.deepcopy(handle_points)
    interp_mask = F.interpolate(mask, (init_code.shape[2],init_code.shape[3]), mode='nearest')
    using_mask = interp_mask.sum() != 0.0

    # prepare amp scaler for mixed-precision training
    scaler = torch.cuda.amp.GradScaler()
    for step_idx in range(args.n_pix_step):
        with torch.autocast(device_type='cuda', dtype=torch.float16):
            unet_output, F1 = model.forward_unet_features(init_code, t,
                encoder_hidden_states=text_embeddings,
                layer_idx=args.unet_feature_idx, interp_res_h=args.sup_res_h, interp_res_w=args.sup_res_w)
            x_prev_updated,_ = model.step(unet_output, t, init_code)

            # do point tracking to update handle points before computing motion supervision loss
            if step_idx != 0:
                handle_points = point_tracking(F0, F1, handle_points, handle_points_init, args)
                print('new handle points', handle_points)

            # break if all handle points have reached the targets
            if check_handle_reach_target(handle_points, target_points):
                break

            loss = 0.0
            _, _, max_r, max_c = F0.shape
            for i in range(len(handle_points)):
                pi, ti = handle_points[i], target_points[i]
                # skip if the distance between target and source is less than 1
                if (ti - pi).norm() < 2.:
                    continue

                di = (ti - pi) / (ti - pi).norm()

                # motion supervision
                # with boundary protection
                r1, r2 = max(0,int(pi[0])-args.r_m), min(max_r,int(pi[0])+args.r_m+1)
                c1, c2 = max(0,int(pi[1])-args.r_m), min(max_c,int(pi[1])+args.r_m+1)
                f0_patch = F1[:,:,r1:r2, c1:c2].detach()
                f1_patch = interpolate_feature_patch(F1,r1+di[0],r2+di[0],c1+di[1],c2+di[1])

                # original code, without boundary protection
                # f0_patch = F1[:,:,int(pi[0])-args.r_m:int(pi[0])+args.r_m+1, int(pi[1])-args.r_m:int(pi[1])+args.r_m+1].detach()
                # f1_patch = interpolate_feature_patch(F1, pi[0] + di[0], pi[1] + di[1], args.r_m)
                loss += ((2*args.r_m+1)**2)*F.l1_loss(f0_patch, f1_patch)

            # masked region must stay unchanged
            if using_mask:
                loss += args.lam * ((x_prev_updated-x_prev_0)*(1.0-interp_mask)).abs().sum()
            # loss += args.lam * ((init_code_orig-init_code)*(1.0-interp_mask)).abs().sum()
            print('loss total=%f'%(loss.item()))

        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        optimizer.zero_grad()

    return init_code

def drag_diffusion_update_gen(model,
                              init_code,
                              text_embeddings,
                              t,
                              handle_points,
                              target_points,
                              mask,
                              args):

    assert len(handle_points) == len(target_points), \
        "number of handle point must equals target points"
    if text_embeddings is None:
        text_embeddings = model.get_text_embeddings(args.prompt)

    # positive prompt embedding
    if args.guidance_scale > 1.0:
        unconditional_input = model.tokenizer(
            [args.neg_prompt],
            padding="max_length",
            max_length=77,
            return_tensors="pt"
        )
        unconditional_emb = model.text_encoder(unconditional_input.input_ids.to(text_embeddings.device))[0].detach()
        text_embeddings = torch.cat([unconditional_emb, text_embeddings], dim=0)

    # the init output feature of unet
    with torch.no_grad():
        if args.guidance_scale > 1.:
            model_inputs_0 = copy.deepcopy(torch.cat([init_code] * 2))
        else:
            model_inputs_0 = copy.deepcopy(init_code)
        unet_output, F0 = model.forward_unet_features(model_inputs_0, t, encoder_hidden_states=text_embeddings,
            layer_idx=args.unet_feature_idx, interp_res_h=args.sup_res_h, interp_res_w=args.sup_res_w)
        if args.guidance_scale > 1.:
            # strategy 1: discard the unconditional branch feature maps
            # F0 = F0[1].unsqueeze(dim=0)
            # strategy 2: concat pos and neg branch feature maps for motion-sup and point tracking
            # F0 = torch.cat([F0[0], F0[1]], dim=0).unsqueeze(dim=0)
            # strategy 3: concat pos and neg branch feature maps with guidance_scale consideration
            coef = args.guidance_scale / (2*args.guidance_scale - 1.0)
            F0 = torch.cat([(1-coef)*F0[0], coef*F0[1]], dim=0).unsqueeze(dim=0)

            unet_output_uncon, unet_output_con = unet_output.chunk(2, dim=0)
            unet_output = unet_output_uncon + args.guidance_scale * (unet_output_con - unet_output_uncon)
        x_prev_0,_ = model.step(unet_output, t, init_code)
        # init_code_orig = copy.deepcopy(init_code)

    # prepare optimizable init_code and optimizer
    init_code.requires_grad_(True)
    optimizer = torch.optim.Adam([init_code], lr=args.lr)

    # prepare for point tracking and background regularization
    handle_points_init = copy.deepcopy(handle_points)
    interp_mask = F.interpolate(mask, (init_code.shape[2],init_code.shape[3]), mode='nearest')
    using_mask = interp_mask.sum() != 0.0

    # prepare amp scaler for mixed-precision training
    scaler = torch.cuda.amp.GradScaler()
    for step_idx in range(args.n_pix_step):
        with torch.autocast(device_type='cuda', dtype=torch.float16):
            if args.guidance_scale > 1.:
                model_inputs = init_code.repeat(2,1,1,1)
            else:
                model_inputs = init_code
            unet_output, F1 = model.forward_unet_features(model_inputs, t, encoder_hidden_states=text_embeddings,
                layer_idx=args.unet_feature_idx, interp_res_h=args.sup_res_h, interp_res_w=args.sup_res_w)
            if args.guidance_scale > 1.:
                # strategy 1: discard the unconditional branch feature maps
                # F1 = F1[1].unsqueeze(dim=0)
                # strategy 2: concat positive and negative branch feature maps for motion-sup and point tracking
                # F1 = torch.cat([F1[0], F1[1]], dim=0).unsqueeze(dim=0)
                # strategy 3: concat pos and neg branch feature maps with guidance_scale consideration
                coef = args.guidance_scale / (2*args.guidance_scale - 1.0)
                F1 = torch.cat([(1-coef)*F1[0], coef*F1[1]], dim=0).unsqueeze(dim=0)

                unet_output_uncon, unet_output_con = unet_output.chunk(2, dim=0)
                unet_output = unet_output_uncon + args.guidance_scale * (unet_output_con - unet_output_uncon)
            x_prev_updated,_ = model.step(unet_output, t, init_code)

            # do point tracking to update handle points before computing motion supervision loss
            if step_idx != 0:
                handle_points = point_tracking(F0, F1, handle_points, handle_points_init, args)
                print('new handle points', handle_points)

            # break if all handle points have reached the targets
            if check_handle_reach_target(handle_points, target_points):
                break

            loss = 0.0
            _, _, max_r, max_c = F0.shape
            for i in range(len(handle_points)):
                pi, ti = handle_points[i], target_points[i]
                # skip if the distance between target and source is less than 1
                if (ti - pi).norm() < 2.:
                    continue

                di = (ti - pi) / (ti - pi).norm()

                # motion supervision
                # with boundary protection
                r1, r2 = max(0,int(pi[0])-args.r_m), min(max_r,int(pi[0])+args.r_m+1)
                c1, c2 = max(0,int(pi[1])-args.r_m), min(max_c,int(pi[1])+args.r_m+1)
                f0_patch = F1[:,:,r1:r2, c1:c2].detach()
                f1_patch = interpolate_feature_patch(F1,r1+di[0],r2+di[0],c1+di[1],c2+di[1])

                # original code, without boundary protection
                # f0_patch = F1[:,:,int(pi[0])-args.r_m:int(pi[0])+args.r_m+1, int(pi[1])-args.r_m:int(pi[1])+args.r_m+1].detach()
                # f1_patch = interpolate_feature_patch(F1, pi[0] + di[0], pi[1] + di[1], args.r_m)

                loss += ((2*args.r_m+1)**2)*F.l1_loss(f0_patch, f1_patch)

            # masked region must stay unchanged
            if using_mask:
                loss += args.lam * ((x_prev_updated-x_prev_0)*(1.0-interp_mask)).abs().sum()
            # loss += args.lam * ((init_code_orig - init_code)*(1.0-interp_mask)).abs().sum()
            print('loss total=%f'%(loss.item()))

        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        optimizer.zero_grad()

    return init_code