File size: 13,151 Bytes
8c8af64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
# ytedance Inc..  
# *************************************************************************

from PIL import Image
import os
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from torchvision import transforms
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image

from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
from diffusers.models.attention_processor import (
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    SlicedAttnAddedKVProcessor,
)
from diffusers.models.lora import LoRALinearLayer
from diffusers.optimization import get_scheduler
from diffusers.training_utils import unet_lora_state_dict
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.24.0")


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
    else:
        raise ValueError(f"{model_class} is not supported.")

def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs

def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=False):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds

# model_path: path of the model
# image: input image, have not been pre-processed
# save_lora_path: the path to save the lora
# prompt: the user input prompt
# lora_step: number of lora training step
# lora_lr: learning rate of lora training
# lora_rank: the rank of lora
# save_interval: the frequency of saving lora checkpoints
def train_lora(image,
    prompt,
    model_path,
    vae_path,
    save_lora_path,
    lora_step,
    lora_lr,
    lora_batch_size,
    lora_rank,
    progress,
    save_interval=-1):
    # initialize accelerator
    accelerator = Accelerator(
        gradient_accumulation_steps=1,
        mixed_precision='fp16'
    )
    set_seed(0)

    # Load the tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        model_path,
        subfolder="tokenizer",
        revision=None,
        use_fast=False,
    )
    # initialize the model
    noise_scheduler = DDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
    text_encoder_cls = import_model_class_from_model_name_or_path(model_path, revision=None)
    text_encoder = text_encoder_cls.from_pretrained(
        model_path, subfolder="text_encoder", revision=None
    )
    if vae_path == "default":
        vae = AutoencoderKL.from_pretrained(
            model_path, subfolder="vae", revision=None
        )
    else:
        vae = AutoencoderKL.from_pretrained(vae_path)
    unet = UNet2DConditionModel.from_pretrained(
        model_path, subfolder="unet", revision=None
    )
    pipeline = StableDiffusionPipeline.from_pretrained(
                    pretrained_model_name_or_path=model_path,
                    vae=vae,
                    unet=unet,
                    text_encoder=text_encoder,
                    scheduler=noise_scheduler,
                    torch_dtype=torch.float16)

    # set device and dtype
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    unet.requires_grad_(False)

    unet.to(device, dtype=torch.float16)
    vae.to(device, dtype=torch.float16)
    text_encoder.to(device, dtype=torch.float16)

    # Set correct lora layers
    unet_lora_parameters = []
    for attn_processor_name, attn_processor in unet.attn_processors.items():
        # Parse the attention module.
        attn_module = unet
        for n in attn_processor_name.split(".")[:-1]:
            attn_module = getattr(attn_module, n)

        # Set the `lora_layer` attribute of the attention-related matrices.
        attn_module.to_q.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_q.in_features,
                out_features=attn_module.to_q.out_features,
                rank=lora_rank
            )
        )
        attn_module.to_k.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_k.in_features,
                out_features=attn_module.to_k.out_features,
                rank=lora_rank
            )
        )
        attn_module.to_v.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_v.in_features,
                out_features=attn_module.to_v.out_features,
                rank=lora_rank
            )
        )
        attn_module.to_out[0].set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_out[0].in_features,
                out_features=attn_module.to_out[0].out_features,
                rank=lora_rank,
            )
        )

        # Accumulate the LoRA params to optimize.
        unet_lora_parameters.extend(attn_module.to_q.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_k.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters())

        if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
            attn_module.add_k_proj.set_lora_layer(
                LoRALinearLayer(
                    in_features=attn_module.add_k_proj.in_features,
                    out_features=attn_module.add_k_proj.out_features,
                    rank=args.rank,
                )
            )
            attn_module.add_v_proj.set_lora_layer(
                LoRALinearLayer(
                    in_features=attn_module.add_v_proj.in_features,
                    out_features=attn_module.add_v_proj.out_features,
                    rank=args.rank,
                )
            )
            unet_lora_parameters.extend(attn_module.add_k_proj.lora_layer.parameters())
            unet_lora_parameters.extend(attn_module.add_v_proj.lora_layer.parameters())


    # Optimizer creation
    params_to_optimize = (unet_lora_parameters)
    optimizer = torch.optim.AdamW(
        params_to_optimize,
        lr=lora_lr,
        betas=(0.9, 0.999),
        weight_decay=1e-2,
        eps=1e-08,
    )

    lr_scheduler = get_scheduler(
        "constant",
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=lora_step,
        num_cycles=1,
        power=1.0,
    )

    # prepare accelerator
    # unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
    # optimizer = accelerator.prepare_optimizer(optimizer)
    # lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)

    unet,optimizer,lr_scheduler = accelerator.prepare(unet,optimizer,lr_scheduler)

    # initialize text embeddings
    with torch.no_grad():
        text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None)
        text_embedding = encode_prompt(
            text_encoder,
            text_inputs.input_ids,
            text_inputs.attention_mask,
            text_encoder_use_attention_mask=False
        )
        text_embedding = text_embedding.repeat(lora_batch_size, 1, 1)

    # initialize image transforms
    image_transforms_pil = transforms.Compose(
        [
            transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.RandomCrop(512),
        ]
    )
    image_transforms_tensor = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    for step in progress.tqdm(range(lora_step), desc="training LoRA"):
        unet.train()
        image_batch = []
        image_pil_batch = []
        for _ in range(lora_batch_size):
            # first store pil image
            image_transformed = image_transforms_pil(Image.fromarray(image))
            image_pil_batch.append(image_transformed)            

            # then store tensor image
            image_transformed = image_transforms_tensor(image_transformed).to(device, dtype=torch.float16)
            image_transformed = image_transformed.unsqueeze(dim=0)
            image_batch.append(image_transformed)

        # repeat the image_transformed to enable multi-batch training
        image_batch = torch.cat(image_batch, dim=0)

        latents_dist = vae.encode(image_batch).latent_dist
        model_input = latents_dist.sample() * vae.config.scaling_factor
        # Sample noise that we'll add to the latents
        noise = torch.randn_like(model_input)
        bsz, channels, height, width = model_input.shape
        # Sample a random timestep for each image
        timesteps = torch.randint(
            0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
        )
        timesteps = timesteps.long()

        # Add noise to the model input according to the noise magnitude at each timestep
        # (this is the forward diffusion process)
        noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)

        # Predict the noise residual
        model_pred = unet(noisy_model_input,
                          timesteps,
                          text_embedding).sample

        # Get the target for loss depending on the prediction type
        if noise_scheduler.config.prediction_type == "epsilon":
            target = noise
        elif noise_scheduler.config.prediction_type == "v_prediction":
            target = noise_scheduler.get_velocity(model_input, noise, timesteps)
        else:
            raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
        accelerator.backward(loss)
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

        if save_interval > 0 and (step + 1) % save_interval == 0:
            save_lora_path_intermediate = os.path.join(save_lora_path, str(step+1))
            if not os.path.isdir(save_lora_path_intermediate):
                os.mkdir(save_lora_path_intermediate)
            # unet = unet.to(torch.float32)
            # unwrap_model is used to remove all special modules added when doing distributed training
            # so here, there is no need to call unwrap_model
            # unet_lora_layers = accelerator.unwrap_model(unet_lora_layers)
            unet_lora_layers = unet_lora_state_dict(unet)
            LoraLoaderMixin.save_lora_weights(
                save_directory=save_lora_path_intermediate,
                unet_lora_layers=unet_lora_layers,
                text_encoder_lora_layers=None,
            )
            # unet = unet.to(torch.float16)

    # save the trained lora
    # unet = unet.to(torch.float32)
    # unwrap_model is used to remove all special modules added when doing distributed training
    # so here, there is no need to call unwrap_model
    # unet_lora_layers = accelerator.unwrap_model(unet_lora_layers)
    unet_lora_layers = unet_lora_state_dict(unet)
    LoraLoaderMixin.save_lora_weights(
        save_directory=save_lora_path,
        unet_lora_layers=unet_lora_layers,
        text_encoder_lora_layers=None,
    )

    return