File size: 1,883 Bytes
8c8af64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# *************************************************************************
# Copyright (2023) Bytedance Inc.
#
# Copyright (2023) DragDiffusion Authors 
#
# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
#
#     http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
# *************************************************************************

import os
import numpy as np
import pickle

import sys
sys.path.insert(0, '../')


if __name__ == '__main__':
    all_category = [
        'art_work',
        'land_scape',
        'building_city_view',
        'building_countryside_view',
        'animals',
        'human_head',
        'human_upper_body',
        'human_full_body',
        'interior_design',
        'other_objects',
    ]

    # assume root_dir and lora_dir are valid directory
    root_dir = 'drag_bench_data'

    num_samples, num_pair_points = 0, 0
    for cat in all_category:
        file_dir = os.path.join(root_dir, cat)
        for sample_name in os.listdir(file_dir):
            if sample_name == '.DS_Store':
                continue
            sample_path = os.path.join(file_dir, sample_name)

            # load meta data
            with open(os.path.join(sample_path, 'meta_data.pkl'), 'rb') as f:
                meta_data = pickle.load(f)
            points = meta_data['points']
            num_samples += 1
            num_pair_points += len(points) // 2
    print(num_samples)
    print(num_pair_points)