Spaces:
Build error
Build error
Update modeling/bagel/bagel.py
Browse files- modeling/bagel/bagel.py +1039 -1025
modeling/bagel/bagel.py
CHANGED
@@ -1,1026 +1,1040 @@
|
|
1 |
-
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
import copy
|
5 |
-
from typing import List, Tuple, Optional
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
from PIL import Image
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torch import nn
|
12 |
-
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
-
from transformers.configuration_utils import PretrainedConfig
|
14 |
-
from transformers.modeling_utils import PreTrainedModel
|
15 |
-
|
16 |
-
from data.data_utils import (
|
17 |
-
create_sparse_mask,
|
18 |
-
get_flattened_position_ids_extrapolate,
|
19 |
-
get_flattened_position_ids_interpolate,
|
20 |
-
patchify,
|
21 |
-
)
|
22 |
-
from .qwen2_navit import NaiveCache
|
23 |
-
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
|
24 |
-
|
25 |
-
|
26 |
-
class BagelConfig(PretrainedConfig):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
visual_gen=True,
|
30 |
-
visual_und=True,
|
31 |
-
llm_config=None,
|
32 |
-
vit_config=None,
|
33 |
-
vae_config=None,
|
34 |
-
latent_patch_size=2,
|
35 |
-
max_latent_size=32,
|
36 |
-
vit_max_num_patch_per_side=70,
|
37 |
-
connector_act="gelu_pytorch_tanh",
|
38 |
-
interpolate_pos=False,
|
39 |
-
timestep_shift=1.0,
|
40 |
-
**kwargs
|
41 |
-
):
|
42 |
-
super().__init__(**kwargs)
|
43 |
-
self.visual_gen = visual_gen
|
44 |
-
self.visual_und = visual_und
|
45 |
-
self.llm_config = llm_config
|
46 |
-
self.vit_config = vit_config
|
47 |
-
self.vae_config = vae_config
|
48 |
-
self.latent_patch_size = latent_patch_size
|
49 |
-
self.max_latent_size = max_latent_size
|
50 |
-
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
|
51 |
-
self.connector_act = connector_act
|
52 |
-
self.interpolate_pos = interpolate_pos
|
53 |
-
self.timestep_shift = timestep_shift
|
54 |
-
|
55 |
-
|
56 |
-
class Bagel(PreTrainedModel):
|
57 |
-
config_class = BagelConfig
|
58 |
-
base_model_prefix = 'bagel'
|
59 |
-
|
60 |
-
def __init__(self, language_model, vit_model, config: BagelConfig):
|
61 |
-
super().__init__(config)
|
62 |
-
self.language_model = language_model
|
63 |
-
self.hidden_size = config.llm_config.hidden_size
|
64 |
-
self.use_moe = "Mo" in config.llm_config.layer_module
|
65 |
-
self.num_heads = config.llm_config.num_attention_heads
|
66 |
-
|
67 |
-
if config.visual_gen:
|
68 |
-
self.latent_patch_size = config.latent_patch_size
|
69 |
-
self.timestep_shift = config.timestep_shift
|
70 |
-
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
|
71 |
-
self.max_latent_size = config.max_latent_size
|
72 |
-
self.latent_channel = config.vae_config.z_channels
|
73 |
-
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
|
74 |
-
self.time_embedder = TimestepEmbedder(self.hidden_size)
|
75 |
-
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
|
76 |
-
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
|
77 |
-
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
|
78 |
-
|
79 |
-
if config.visual_und:
|
80 |
-
self.vit_model = vit_model
|
81 |
-
self.vit_patch_size = config.vit_config.patch_size
|
82 |
-
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
|
83 |
-
self.vit_hidden_size = config.vit_config.hidden_size
|
84 |
-
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
|
85 |
-
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
|
86 |
-
|
87 |
-
if config.interpolate_pos:
|
88 |
-
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
|
89 |
-
else:
|
90 |
-
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
|
91 |
-
|
92 |
-
self.config = config
|
93 |
-
self._init_weights()
|
94 |
-
|
95 |
-
def _init_weights(self):
|
96 |
-
if self.config.visual_gen:
|
97 |
-
nn.init.constant_(self.llm2vae.weight, 0)
|
98 |
-
nn.init.constant_(self.llm2vae.bias, 0)
|
99 |
-
|
100 |
-
def forward(
|
101 |
-
self,
|
102 |
-
sequence_length: int,
|
103 |
-
packed_text_ids: torch.LongTensor,
|
104 |
-
packed_text_indexes: torch.LongTensor,
|
105 |
-
sample_lens: List[int],
|
106 |
-
packed_position_ids: torch.LongTensor,
|
107 |
-
nested_attention_masks: List[torch.Tensor] = None,
|
108 |
-
split_lens: List[int] = None,
|
109 |
-
attn_modes: List[str] = None,
|
110 |
-
# for visual understanding
|
111 |
-
ce_loss_indexes: Optional[torch.BoolTensor] = None,
|
112 |
-
packed_label_ids: Optional[torch.LongTensor] = None,
|
113 |
-
packed_vit_tokens: Optional[torch.Tensor] = None,
|
114 |
-
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
|
115 |
-
packed_vit_position_ids: Optional[torch.LongTensor] = None,
|
116 |
-
vit_token_seqlens: Optional[torch.IntTensor] = None,
|
117 |
-
# for visual generation
|
118 |
-
padded_latent: Optional[torch.Tensor] = None,
|
119 |
-
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
|
120 |
-
packed_latent_position_ids: Optional[torch.LongTensor] = None,
|
121 |
-
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
|
122 |
-
packed_timesteps: Optional[torch.LongTensor] = None,
|
123 |
-
mse_loss_indexes: Optional[torch.BoolTensor] = None,
|
124 |
-
) -> torch.Tensor:
|
125 |
-
"""
|
126 |
-
Args:
|
127 |
-
sequence_length: length of sequence.
|
128 |
-
packed_text_ids: 1-D int tensor, packed text token ids.
|
129 |
-
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
|
130 |
-
sample_lens: A list of N ints, length of each sample in packed_sequence.
|
131 |
-
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
|
132 |
-
-inf means ignore.
|
133 |
-
packed_position_ids: packed 1-D positions, an image has only one global position shared
|
134 |
-
by all latent tokens.
|
135 |
-
|
136 |
-
packed_vit_tokens: packed patchified image tokens for vit model.
|
137 |
-
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
|
138 |
-
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
|
139 |
-
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
|
140 |
-
packed_label_ids: 1-D int tensor, packed label token ids.
|
141 |
-
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
|
142 |
-
|
143 |
-
padded_latent: padded latent from VAE encoder.
|
144 |
-
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
|
145 |
-
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
|
146 |
-
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
|
147 |
-
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
|
148 |
-
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
|
149 |
-
"""
|
150 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
151 |
-
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
|
152 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
153 |
-
|
154 |
-
if nested_attention_masks is None:
|
155 |
-
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
156 |
-
seqlen = sum(sample_lens)
|
157 |
-
block_mask = create_block_mask(
|
158 |
-
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
|
159 |
-
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
|
160 |
-
)
|
161 |
-
attention_mask = block_mask
|
162 |
-
else:
|
163 |
-
attention_mask = nested_attention_masks
|
164 |
-
|
165 |
-
if self.config.visual_und:
|
166 |
-
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
167 |
-
cu_seqlens = cu_seqlens.to(torch.int32)
|
168 |
-
max_seqlen = torch.max(vit_token_seqlens).item()
|
169 |
-
packed_vit_token_embed = self.vit_model(
|
170 |
-
packed_pixel_values=packed_vit_tokens,
|
171 |
-
packed_flattened_position_ids=packed_vit_position_ids,
|
172 |
-
cu_seqlens=cu_seqlens,
|
173 |
-
max_seqlen=max_seqlen,
|
174 |
-
)
|
175 |
-
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
176 |
-
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
177 |
-
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
|
178 |
-
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
179 |
-
|
180 |
-
if self.config.visual_gen:
|
181 |
-
p = self.latent_patch_size
|
182 |
-
packed_latent = []
|
183 |
-
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
184 |
-
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
185 |
-
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
186 |
-
packed_latent.append(latent)
|
187 |
-
packed_latent_clean = torch.cat(packed_latent, dim=0)
|
188 |
-
|
189 |
-
noise = torch.randn_like(packed_latent_clean)
|
190 |
-
packed_timesteps = torch.sigmoid(packed_timesteps)
|
191 |
-
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
|
192 |
-
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
|
193 |
-
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
194 |
-
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
|
195 |
-
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
|
196 |
-
packed_sequence[packed_vae_token_indexes] = packed_latent
|
197 |
-
|
198 |
-
extra_inputs = {}
|
199 |
-
if self.use_moe:
|
200 |
-
packed_und_token_indexes = packed_text_indexes
|
201 |
-
if packed_vit_token_indexes is not None:
|
202 |
-
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
|
203 |
-
extra_inputs.update(
|
204 |
-
packed_und_token_indexes=packed_und_token_indexes,
|
205 |
-
packed_gen_token_indexes=packed_vae_token_indexes,
|
206 |
-
)
|
207 |
-
|
208 |
-
last_hidden_state = self.language_model(
|
209 |
-
packed_sequence=packed_sequence,
|
210 |
-
sample_lens=sample_lens,
|
211 |
-
attention_mask=attention_mask,
|
212 |
-
packed_position_ids=packed_position_ids,
|
213 |
-
**extra_inputs,
|
214 |
-
)
|
215 |
-
|
216 |
-
mse = None
|
217 |
-
if self.config.visual_gen:
|
218 |
-
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
|
219 |
-
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
|
220 |
-
has_mse = packed_timesteps > 0
|
221 |
-
mse = (packed_mse_preds - target[has_mse]) ** 2
|
222 |
-
|
223 |
-
ce = None
|
224 |
-
if ce_loss_indexes is not None:
|
225 |
-
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
|
226 |
-
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
|
227 |
-
|
228 |
-
return dict(mse=mse, ce=ce)
|
229 |
-
|
230 |
-
|
231 |
-
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
|
232 |
-
packed_text_ids = list()
|
233 |
-
packed_text_position_ids = list()
|
234 |
-
text_token_lens = list()
|
235 |
-
packed_text_indexes = list()
|
236 |
-
packed_key_value_indexes = list()
|
237 |
-
|
238 |
-
curr = 0
|
239 |
-
newlens, new_rope = list(), list()
|
240 |
-
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
|
241 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
242 |
-
curr += curr_kvlen
|
243 |
-
|
244 |
-
text_ids = tokenizer.encode(prompt)
|
245 |
-
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
|
246 |
-
text_token_lens.append(len(text_ids))
|
247 |
-
packed_text_ids.extend(text_ids)
|
248 |
-
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
|
249 |
-
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
|
250 |
-
newlens.append(curr_kvlen + len(text_ids))
|
251 |
-
new_rope.append(curr_position_id + len(text_ids))
|
252 |
-
curr += len(text_ids)
|
253 |
-
|
254 |
-
generation_input = {
|
255 |
-
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
|
256 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
257 |
-
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
|
258 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
259 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
260 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
261 |
-
}
|
262 |
-
|
263 |
-
return generation_input, newlens, new_rope
|
264 |
-
|
265 |
-
@torch.no_grad
|
266 |
-
def forward_cache_update_text(
|
267 |
-
self,
|
268 |
-
past_key_values: NaiveCache,
|
269 |
-
packed_text_ids: torch.IntTensor,
|
270 |
-
packed_text_position_ids: torch.LongTensor,
|
271 |
-
text_token_lens: torch.LongTensor,
|
272 |
-
packed_text_indexes: torch.LongTensor,
|
273 |
-
packed_key_value_indexes: torch.LongTensor,
|
274 |
-
key_values_lens: torch.IntTensor,
|
275 |
-
):
|
276 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
277 |
-
|
278 |
-
extra_inputs = {}
|
279 |
-
if self.use_moe:
|
280 |
-
extra_inputs = {"mode": "und"}
|
281 |
-
|
282 |
-
output = self.language_model.forward_inference(
|
283 |
-
packed_query_sequence=packed_text_embedding,
|
284 |
-
query_lens=text_token_lens,
|
285 |
-
packed_query_position_ids=packed_text_position_ids,
|
286 |
-
packed_query_indexes=packed_text_indexes,
|
287 |
-
past_key_values=past_key_values,
|
288 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
289 |
-
key_values_lens=key_values_lens,
|
290 |
-
update_past_key_values=True,
|
291 |
-
is_causal=True,
|
292 |
-
**extra_inputs,
|
293 |
-
)
|
294 |
-
past_key_values = output.past_key_values
|
295 |
-
|
296 |
-
return past_key_values
|
297 |
-
|
298 |
-
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
|
299 |
-
packed_vit_token_indexes = list()
|
300 |
-
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
|
301 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
302 |
-
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
303 |
-
packed_key_value_indexes = list()
|
304 |
-
|
305 |
-
_curr = curr = 0
|
306 |
-
newlens, new_rope = list(), list()
|
307 |
-
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
308 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
309 |
-
curr += curr_kvlen
|
310 |
-
|
311 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
312 |
-
packed_text_indexes.append(_curr)
|
313 |
-
packed_indexes.append(curr)
|
314 |
-
curr += 1
|
315 |
-
_curr += 1
|
316 |
-
|
317 |
-
image_tensor = transforms(image)
|
318 |
-
vit_position_ids = self.get_flattened_position_ids(
|
319 |
-
image_tensor.size(1), image_tensor.size(2),
|
320 |
-
self.vit_patch_size,
|
321 |
-
max_num_patches_per_side=self.vit_max_num_patch_per_side
|
322 |
-
)
|
323 |
-
vit_tokens = patchify(image_tensor, self.vit_patch_size)
|
324 |
-
packed_vit_tokens.append(vit_tokens)
|
325 |
-
num_img_tokens = vit_tokens.shape[0]
|
326 |
-
packed_vit_position_ids.append(vit_position_ids)
|
327 |
-
vit_token_seqlens.append(num_img_tokens)
|
328 |
-
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
329 |
-
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
330 |
-
curr += num_img_tokens
|
331 |
-
_curr += num_img_tokens
|
332 |
-
|
333 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
334 |
-
packed_text_indexes.append(_curr)
|
335 |
-
packed_indexes.append(curr)
|
336 |
-
curr += 1
|
337 |
-
_curr += 1
|
338 |
-
|
339 |
-
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
340 |
-
packed_seqlens.append(num_img_tokens + 2)
|
341 |
-
newlens.append(curr_kvlen + num_img_tokens + 2)
|
342 |
-
new_rope.append(curr_position_id + 1)
|
343 |
-
|
344 |
-
generation_input = {
|
345 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
346 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
347 |
-
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
|
348 |
-
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
|
349 |
-
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
|
350 |
-
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
|
351 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
352 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
353 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
354 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
355 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
356 |
-
}
|
357 |
-
|
358 |
-
return generation_input, newlens, new_rope
|
359 |
-
|
360 |
-
@torch.no_grad
|
361 |
-
def forward_cache_update_vit(
|
362 |
-
self,
|
363 |
-
past_key_values: NaiveCache,
|
364 |
-
packed_text_ids: torch.LongTensor,
|
365 |
-
packed_text_indexes: torch.LongTensor,
|
366 |
-
packed_vit_tokens: torch.Tensor,
|
367 |
-
packed_vit_token_indexes: torch.LongTensor,
|
368 |
-
packed_vit_position_ids: torch.LongTensor,
|
369 |
-
vit_token_seqlens: torch.IntTensor,
|
370 |
-
packed_position_ids: torch.LongTensor,
|
371 |
-
packed_seqlens: torch.IntTensor,
|
372 |
-
packed_indexes: torch.LongTensor,
|
373 |
-
packed_key_value_indexes: torch.LongTensor,
|
374 |
-
key_values_lens: torch.IntTensor,
|
375 |
-
):
|
376 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
377 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
378 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
379 |
-
|
380 |
-
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
381 |
-
cu_seqlens = cu_seqlens.to(torch.int32)
|
382 |
-
max_seqlen = torch.max(vit_token_seqlens).item()
|
383 |
-
packed_vit_token_embed = self.vit_model(
|
384 |
-
packed_pixel_values=packed_vit_tokens,
|
385 |
-
packed_flattened_position_ids=packed_vit_position_ids,
|
386 |
-
cu_seqlens=cu_seqlens,
|
387 |
-
max_seqlen=max_seqlen,
|
388 |
-
)
|
389 |
-
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
390 |
-
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
391 |
-
packed_vit_token_embed = packed_vit_token_embed + pos_emb
|
392 |
-
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
393 |
-
|
394 |
-
extra_inputs = {}
|
395 |
-
if self.use_moe:
|
396 |
-
extra_inputs = {"mode": "und"}
|
397 |
-
|
398 |
-
output = self.language_model.forward_inference(
|
399 |
-
packed_query_sequence=packed_sequence,
|
400 |
-
query_lens=packed_seqlens,
|
401 |
-
packed_query_position_ids=packed_position_ids,
|
402 |
-
packed_query_indexes=packed_indexes,
|
403 |
-
past_key_values=past_key_values,
|
404 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
405 |
-
key_values_lens=key_values_lens,
|
406 |
-
update_past_key_values=True,
|
407 |
-
is_causal=False,
|
408 |
-
**extra_inputs,
|
409 |
-
)
|
410 |
-
past_key_values = output.past_key_values
|
411 |
-
|
412 |
-
return past_key_values
|
413 |
-
|
414 |
-
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
|
415 |
-
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
|
416 |
-
packed_vae_token_indexes = list()
|
417 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
418 |
-
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
419 |
-
packed_key_value_indexes = list()
|
420 |
-
|
421 |
-
_curr = curr = 0
|
422 |
-
vae_image_tensors = list()
|
423 |
-
newlens, new_rope = list(), list()
|
424 |
-
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
425 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
426 |
-
curr += curr_kvlen
|
427 |
-
|
428 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
429 |
-
packed_text_indexes.append(_curr)
|
430 |
-
packed_indexes.append(curr)
|
431 |
-
curr += 1
|
432 |
-
_curr += 1
|
433 |
-
|
434 |
-
image_tensor = transforms(image)
|
435 |
-
vae_image_tensors.append(image_tensor)
|
436 |
-
vae_posiiton_ids = self.get_flattened_position_ids(
|
437 |
-
image_tensor.size(1), image_tensor.size(2),
|
438 |
-
self.latent_downsample,
|
439 |
-
max_num_patches_per_side=self.max_latent_size
|
440 |
-
)
|
441 |
-
packed_vae_position_ids.append(vae_posiiton_ids)
|
442 |
-
H, W = image_tensor.shape[1:]
|
443 |
-
h = H // self.latent_downsample
|
444 |
-
w = W // self.latent_downsample
|
445 |
-
patchified_vae_latent_shapes.append((h, w))
|
446 |
-
|
447 |
-
num_img_tokens = w * h
|
448 |
-
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
449 |
-
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
450 |
-
curr += num_img_tokens
|
451 |
-
_curr += num_img_tokens
|
452 |
-
|
453 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
454 |
-
packed_text_indexes.append(_curr)
|
455 |
-
packed_indexes.append(curr)
|
456 |
-
curr += 1
|
457 |
-
_curr += 1
|
458 |
-
|
459 |
-
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
460 |
-
packed_seqlens.append(num_img_tokens + 2)
|
461 |
-
newlens.append(curr_kvlen + num_img_tokens + 2)
|
462 |
-
new_rope.append(curr_position_id + 1)
|
463 |
-
|
464 |
-
image_sizes = [item.shape for item in vae_image_tensors]
|
465 |
-
max_image_size = [max(item) for item in list(zip(*image_sizes))]
|
466 |
-
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
|
467 |
-
for i, image_tensor in enumerate(vae_image_tensors):
|
468 |
-
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
|
469 |
-
|
470 |
-
generation_input = {
|
471 |
-
"padded_images": padded_images,
|
472 |
-
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
|
473 |
-
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
474 |
-
"packed_timesteps": torch.tensor([timestep]),
|
475 |
-
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
476 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
477 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
478 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
479 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
480 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
481 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
482 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
483 |
-
}
|
484 |
-
|
485 |
-
return generation_input, newlens, new_rope
|
486 |
-
|
487 |
-
@torch.no_grad
|
488 |
-
def forward_cache_update_vae(
|
489 |
-
self,
|
490 |
-
vae_model,
|
491 |
-
past_key_values: NaiveCache,
|
492 |
-
padded_images: torch.Tensor,
|
493 |
-
patchified_vae_latent_shapes: List,
|
494 |
-
packed_vae_position_ids: torch.LongTensor,
|
495 |
-
packed_timesteps: torch.Tensor,
|
496 |
-
packed_vae_token_indexes: torch.LongTensor,
|
497 |
-
packed_text_ids: torch.LongTensor,
|
498 |
-
packed_text_indexes: torch.LongTensor,
|
499 |
-
packed_position_ids: torch.LongTensor,
|
500 |
-
packed_seqlens: torch.IntTensor,
|
501 |
-
packed_indexes: torch.LongTensor,
|
502 |
-
key_values_lens: torch.IntTensor,
|
503 |
-
packed_key_value_indexes: torch.Tensor,
|
504 |
-
):
|
505 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
506 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
507 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
508 |
-
|
509 |
-
padded_latent = vae_model.encode(padded_images)
|
510 |
-
|
511 |
-
p = self.latent_patch_size
|
512 |
-
packed_latent = list()
|
513 |
-
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
514 |
-
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
515 |
-
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
516 |
-
packed_latent.append(latent)
|
517 |
-
packed_latent = torch.cat(packed_latent, dim=0)
|
518 |
-
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
519 |
-
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
520 |
-
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
|
521 |
-
packed_sequence[packed_vae_token_indexes] = packed_latent
|
522 |
-
|
523 |
-
extra_inputs = {}
|
524 |
-
if self.use_moe:
|
525 |
-
extra_inputs = {
|
526 |
-
"mode": "gen",
|
527 |
-
"packed_vae_token_indexes": packed_vae_token_indexes,
|
528 |
-
"packed_text_indexes": packed_text_indexes
|
529 |
-
}
|
530 |
-
|
531 |
-
output = self.language_model.forward_inference(
|
532 |
-
packed_query_sequence=packed_sequence,
|
533 |
-
query_lens=packed_seqlens,
|
534 |
-
packed_query_position_ids=packed_position_ids,
|
535 |
-
packed_query_indexes=packed_indexes,
|
536 |
-
past_key_values=past_key_values,
|
537 |
-
key_values_lens=key_values_lens,
|
538 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
539 |
-
update_past_key_values=True,
|
540 |
-
is_causal=False,
|
541 |
-
**extra_inputs,
|
542 |
-
)
|
543 |
-
past_key_values = output.past_key_values
|
544 |
-
|
545 |
-
return past_key_values
|
546 |
-
|
547 |
-
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
|
548 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
549 |
-
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
|
550 |
-
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
|
551 |
-
packed_key_value_indexes = list()
|
552 |
-
|
553 |
-
query_curr = curr = 0
|
554 |
-
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
555 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
556 |
-
curr += curr_kvlen
|
557 |
-
|
558 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
559 |
-
packed_text_indexes.append(query_curr)
|
560 |
-
packed_indexes.append(curr)
|
561 |
-
curr += 1
|
562 |
-
query_curr += 1
|
563 |
-
|
564 |
-
vae_posiiton_ids = self.get_flattened_position_ids(
|
565 |
-
H, W,
|
566 |
-
self.latent_downsample,
|
567 |
-
max_num_patches_per_side=self.max_latent_size
|
568 |
-
)
|
569 |
-
packed_vae_position_ids.append(vae_posiiton_ids)
|
570 |
-
|
571 |
-
h, w = H // self.latent_downsample, W // self.latent_downsample
|
572 |
-
num_image_tokens = h * w
|
573 |
-
packed_init_noises.append(
|
574 |
-
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
|
575 |
-
)
|
576 |
-
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
|
577 |
-
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
578 |
-
curr += num_image_tokens
|
579 |
-
query_curr += num_image_tokens
|
580 |
-
|
581 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
582 |
-
packed_text_indexes.append(query_curr)
|
583 |
-
packed_indexes.append(curr)
|
584 |
-
curr += 1
|
585 |
-
query_curr += 1
|
586 |
-
|
587 |
-
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
588 |
-
packed_seqlens.append(num_image_tokens + 2)
|
589 |
-
|
590 |
-
generation_input = {
|
591 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
592 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
593 |
-
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
|
594 |
-
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
595 |
-
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
596 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
597 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
598 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
599 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
600 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
601 |
-
}
|
602 |
-
|
603 |
-
return generation_input
|
604 |
-
|
605 |
-
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
|
606 |
-
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
|
607 |
-
|
608 |
-
query_curr = curr = 0
|
609 |
-
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
610 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
611 |
-
curr += curr_kvlen
|
612 |
-
|
613 |
-
packed_indexes.append(curr)
|
614 |
-
curr += 1
|
615 |
-
query_curr += 1
|
616 |
-
|
617 |
-
h, w = H // self.latent_downsample, W // self.latent_downsample
|
618 |
-
num_image_tokens = h * w
|
619 |
-
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
620 |
-
curr += num_image_tokens
|
621 |
-
query_curr += num_image_tokens
|
622 |
-
|
623 |
-
packed_indexes.append(curr)
|
624 |
-
curr += 1
|
625 |
-
query_curr += 1
|
626 |
-
|
627 |
-
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
628 |
-
|
629 |
-
generation_input = {
|
630 |
-
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
631 |
-
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
632 |
-
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
633 |
-
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
634 |
-
}
|
635 |
-
|
636 |
-
return generation_input
|
637 |
-
|
638 |
-
@torch.no_grad
|
639 |
-
def generate_image(
|
640 |
-
self,
|
641 |
-
packed_text_ids: torch.LongTensor,
|
642 |
-
packed_text_indexes: torch.LongTensor,
|
643 |
-
packed_init_noises: torch.Tensor,
|
644 |
-
packed_vae_position_ids: torch.LongTensor,
|
645 |
-
packed_vae_token_indexes: torch.LongTensor,
|
646 |
-
packed_seqlens: torch.IntTensor,
|
647 |
-
packed_position_ids: torch.LongTensor,
|
648 |
-
packed_indexes: torch.LongTensor,
|
649 |
-
past_key_values: NaiveCache,
|
650 |
-
key_values_lens: torch.IntTensor,
|
651 |
-
packed_key_value_indexes: torch.LongTensor,
|
652 |
-
num_timesteps: int = 24,
|
653 |
-
timestep_shift: float = 1.0,
|
654 |
-
cfg_renorm_min: float = 0.0,
|
655 |
-
cfg_renorm_type: str = "global",
|
656 |
-
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
|
657 |
-
# cfg_text
|
658 |
-
cfg_text_scale: float = 1.0,
|
659 |
-
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
660 |
-
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
661 |
-
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
662 |
-
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
|
663 |
-
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
664 |
-
# cfg_img
|
665 |
-
cfg_img_scale: float = 1.0,
|
666 |
-
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
667 |
-
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
668 |
-
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
669 |
-
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
|
670 |
-
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
671 |
-
cfg_type: str = "parallel",
|
672 |
-
):
|
673 |
-
x_t = packed_init_noises
|
674 |
-
|
675 |
-
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
|
676 |
-
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
|
677 |
-
dts = timesteps[:-1] - timesteps[1:]
|
678 |
-
timesteps = timesteps[:-1]
|
679 |
-
|
680 |
-
for i, t in enumerate(timesteps):
|
681 |
-
|
682 |
-
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
|
683 |
-
if t > cfg_interval[0] and t <= cfg_interval[1]:
|
684 |
-
cfg_text_scale_ = cfg_text_scale
|
685 |
-
cfg_img_scale_ = cfg_img_scale
|
686 |
-
else:
|
687 |
-
cfg_text_scale_ = 1.0
|
688 |
-
cfg_img_scale_ = 1.0
|
689 |
-
v_t = self._forward_flow(
|
690 |
-
x_t=x_t,
|
691 |
-
timestep=timestep,
|
692 |
-
packed_vae_token_indexes=packed_vae_token_indexes,
|
693 |
-
packed_vae_position_ids=packed_vae_position_ids,
|
694 |
-
packed_text_ids=packed_text_ids,
|
695 |
-
packed_text_indexes=packed_text_indexes,
|
696 |
-
packed_position_ids=packed_position_ids,
|
697 |
-
packed_indexes=packed_indexes,
|
698 |
-
packed_seqlens=packed_seqlens,
|
699 |
-
key_values_lens=key_values_lens,
|
700 |
-
past_key_values=past_key_values,
|
701 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
702 |
-
cfg_renorm_min=cfg_renorm_min,
|
703 |
-
cfg_renorm_type=cfg_renorm_type,
|
704 |
-
# cfg_text
|
705 |
-
cfg_text_scale=cfg_text_scale_,
|
706 |
-
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
|
707 |
-
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
|
708 |
-
cfg_text_key_values_lens=cfg_text_key_values_lens,
|
709 |
-
cfg_text_past_key_values=cfg_text_past_key_values,
|
710 |
-
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
711 |
-
# cfg_img
|
712 |
-
cfg_img_scale=cfg_img_scale_,
|
713 |
-
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
|
714 |
-
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
|
715 |
-
cfg_img_key_values_lens=cfg_img_key_values_lens,
|
716 |
-
cfg_img_past_key_values=cfg_img_past_key_values,
|
717 |
-
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
718 |
-
cfg_type=cfg_type,
|
719 |
-
)
|
720 |
-
|
721 |
-
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
|
722 |
-
|
723 |
-
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
|
724 |
-
return unpacked_latent
|
725 |
-
|
726 |
-
@torch.no_grad
|
727 |
-
def _forward_flow(
|
728 |
-
self,
|
729 |
-
x_t: torch.Tensor,
|
730 |
-
timestep: torch.LongTensor,
|
731 |
-
packed_vae_token_indexes: torch.LongTensor,
|
732 |
-
packed_vae_position_ids: torch.LongTensor,
|
733 |
-
packed_text_ids: torch.LongTensor,
|
734 |
-
packed_text_indexes: torch.LongTensor,
|
735 |
-
packed_indexes: torch.LongTensor,
|
736 |
-
packed_position_ids: torch.LongTensor,
|
737 |
-
packed_seqlens: torch.IntTensor,
|
738 |
-
key_values_lens: torch.IntTensor,
|
739 |
-
past_key_values: NaiveCache,
|
740 |
-
packed_key_value_indexes: torch.LongTensor,
|
741 |
-
cfg_renorm_min: float = 0.0,
|
742 |
-
cfg_renorm_type: str = "global",
|
743 |
-
# cfg_text
|
744 |
-
cfg_text_scale: float = 1.0,
|
745 |
-
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
746 |
-
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
747 |
-
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
|
748 |
-
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
749 |
-
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
750 |
-
# cfg_img
|
751 |
-
cfg_img_scale: float = 1.0,
|
752 |
-
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
753 |
-
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
754 |
-
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
|
755 |
-
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
756 |
-
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
757 |
-
cfg_type: str = "parallel",
|
758 |
-
):
|
759 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
760 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
761 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
762 |
-
|
763 |
-
assert timestep.unique().shape[0] == 1
|
764 |
-
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
765 |
-
packed_timestep_embeds = self.time_embedder(timestep)
|
766 |
-
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
|
767 |
-
packed_sequence[packed_vae_token_indexes] = x_t
|
768 |
-
|
769 |
-
extra_inputs = {}
|
770 |
-
if self.use_moe:
|
771 |
-
extra_inputs = {
|
772 |
-
"mode": "gen",
|
773 |
-
"packed_vae_token_indexes": packed_vae_token_indexes,
|
774 |
-
"packed_text_indexes": packed_text_indexes
|
775 |
-
}
|
776 |
-
|
777 |
-
output = self.language_model.forward_inference(
|
778 |
-
packed_query_sequence=packed_sequence,
|
779 |
-
query_lens=packed_seqlens,
|
780 |
-
packed_query_position_ids=packed_position_ids,
|
781 |
-
packed_query_indexes=packed_indexes,
|
782 |
-
past_key_values=past_key_values,
|
783 |
-
key_values_lens=key_values_lens,
|
784 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
785 |
-
update_past_key_values=False,
|
786 |
-
is_causal=False,
|
787 |
-
**extra_inputs,
|
788 |
-
)
|
789 |
-
v_t = self.llm2vae(output.packed_query_sequence)
|
790 |
-
v_t = v_t[packed_vae_token_indexes]
|
791 |
-
|
792 |
-
if cfg_text_scale > 1.0:
|
793 |
-
cfg_text_output = self.language_model.forward_inference(
|
794 |
-
packed_query_sequence=packed_sequence,
|
795 |
-
query_lens=packed_seqlens,
|
796 |
-
packed_query_position_ids=cfg_text_packed_position_ids,
|
797 |
-
packed_query_indexes=cfg_text_packed_query_indexes,
|
798 |
-
past_key_values=cfg_text_past_key_values,
|
799 |
-
key_values_lens=cfg_text_key_values_lens,
|
800 |
-
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
801 |
-
update_past_key_values=False,
|
802 |
-
is_causal=False,
|
803 |
-
**extra_inputs,
|
804 |
-
)
|
805 |
-
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
|
806 |
-
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
|
807 |
-
|
808 |
-
if cfg_img_scale > 1.0:
|
809 |
-
cfg_img_output = self.language_model.forward_inference(
|
810 |
-
packed_query_sequence=packed_sequence,
|
811 |
-
query_lens=packed_seqlens,
|
812 |
-
packed_query_position_ids=cfg_img_packed_position_ids,
|
813 |
-
packed_query_indexes=cfg_img_packed_query_indexes,
|
814 |
-
past_key_values=cfg_img_past_key_values,
|
815 |
-
key_values_lens=cfg_img_key_values_lens,
|
816 |
-
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
817 |
-
update_past_key_values=False,
|
818 |
-
is_causal=False,
|
819 |
-
**extra_inputs,
|
820 |
-
)
|
821 |
-
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
|
822 |
-
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
|
823 |
-
|
824 |
-
if cfg_text_scale > 1.0:
|
825 |
-
if cfg_renorm_type == "text_channel":
|
826 |
-
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
827 |
-
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
828 |
-
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
|
829 |
-
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
830 |
-
v_t_text = v_t_text_ * scale
|
831 |
-
if cfg_img_scale > 1.0:
|
832 |
-
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
|
833 |
-
else:
|
834 |
-
v_t = v_t_text
|
835 |
-
else:
|
836 |
-
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
837 |
-
|
838 |
-
if cfg_img_scale > 1.0:
|
839 |
-
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
|
840 |
-
else:
|
841 |
-
v_t_ = v_t_text_
|
842 |
-
|
843 |
-
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
|
844 |
-
if cfg_renorm_type == "global":
|
845 |
-
norm_v_t = torch.norm(v_t)
|
846 |
-
norm_v_t_ = torch.norm(v_t_)
|
847 |
-
elif cfg_renorm_type == "channel":
|
848 |
-
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
849 |
-
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
|
850 |
-
else:
|
851 |
-
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
|
852 |
-
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
853 |
-
v_t = v_t_ * scale
|
854 |
-
else:
|
855 |
-
# No CFG
|
856 |
-
pass
|
857 |
-
|
858 |
-
return v_t
|
859 |
-
|
860 |
-
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
|
861 |
-
packed_start_tokens, packed_key_value_indexes = list(), list()
|
862 |
-
packed_query_position_ids = list()
|
863 |
-
|
864 |
-
curr = 0
|
865 |
-
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
|
866 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
867 |
-
packed_start_tokens.append(new_token_ids['bos_token_id'])
|
868 |
-
packed_query_position_ids.append(curr_position_id)
|
869 |
-
curr += curr_kvlen
|
870 |
-
|
871 |
-
generation_input = {
|
872 |
-
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
|
873 |
-
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
|
874 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
875 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
876 |
-
}
|
877 |
-
|
878 |
-
return generation_input
|
879 |
-
|
880 |
-
@torch.no_grad
|
881 |
-
def generate_text(
|
882 |
-
self,
|
883 |
-
past_key_values: NaiveCache,
|
884 |
-
packed_key_value_indexes: torch.LongTensor,
|
885 |
-
key_values_lens: torch.IntTensor,
|
886 |
-
packed_start_tokens: torch.LongTensor,
|
887 |
-
packed_query_position_ids: torch.LongTensor,
|
888 |
-
max_length: int,
|
889 |
-
do_sample: bool = False,
|
890 |
-
temperature: float = 1.0,
|
891 |
-
end_token_id: int = None,
|
892 |
-
):
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
#
|
1012 |
-
generation_input = self.
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
yield output
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
import copy
|
5 |
+
from typing import List, Tuple, Optional
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
+
from transformers.configuration_utils import PretrainedConfig
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
|
16 |
+
from data.data_utils import (
|
17 |
+
create_sparse_mask,
|
18 |
+
get_flattened_position_ids_extrapolate,
|
19 |
+
get_flattened_position_ids_interpolate,
|
20 |
+
patchify,
|
21 |
+
)
|
22 |
+
from .qwen2_navit import NaiveCache
|
23 |
+
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
|
24 |
+
|
25 |
+
|
26 |
+
class BagelConfig(PretrainedConfig):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
visual_gen=True,
|
30 |
+
visual_und=True,
|
31 |
+
llm_config=None,
|
32 |
+
vit_config=None,
|
33 |
+
vae_config=None,
|
34 |
+
latent_patch_size=2,
|
35 |
+
max_latent_size=32,
|
36 |
+
vit_max_num_patch_per_side=70,
|
37 |
+
connector_act="gelu_pytorch_tanh",
|
38 |
+
interpolate_pos=False,
|
39 |
+
timestep_shift=1.0,
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
self.visual_gen = visual_gen
|
44 |
+
self.visual_und = visual_und
|
45 |
+
self.llm_config = llm_config
|
46 |
+
self.vit_config = vit_config
|
47 |
+
self.vae_config = vae_config
|
48 |
+
self.latent_patch_size = latent_patch_size
|
49 |
+
self.max_latent_size = max_latent_size
|
50 |
+
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
|
51 |
+
self.connector_act = connector_act
|
52 |
+
self.interpolate_pos = interpolate_pos
|
53 |
+
self.timestep_shift = timestep_shift
|
54 |
+
|
55 |
+
|
56 |
+
class Bagel(PreTrainedModel):
|
57 |
+
config_class = BagelConfig
|
58 |
+
base_model_prefix = 'bagel'
|
59 |
+
|
60 |
+
def __init__(self, language_model, vit_model, config: BagelConfig):
|
61 |
+
super().__init__(config)
|
62 |
+
self.language_model = language_model
|
63 |
+
self.hidden_size = config.llm_config.hidden_size
|
64 |
+
self.use_moe = "Mo" in config.llm_config.layer_module
|
65 |
+
self.num_heads = config.llm_config.num_attention_heads
|
66 |
+
|
67 |
+
if config.visual_gen:
|
68 |
+
self.latent_patch_size = config.latent_patch_size
|
69 |
+
self.timestep_shift = config.timestep_shift
|
70 |
+
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
|
71 |
+
self.max_latent_size = config.max_latent_size
|
72 |
+
self.latent_channel = config.vae_config.z_channels
|
73 |
+
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
|
74 |
+
self.time_embedder = TimestepEmbedder(self.hidden_size)
|
75 |
+
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
|
76 |
+
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
|
77 |
+
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
|
78 |
+
|
79 |
+
if config.visual_und:
|
80 |
+
self.vit_model = vit_model
|
81 |
+
self.vit_patch_size = config.vit_config.patch_size
|
82 |
+
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
|
83 |
+
self.vit_hidden_size = config.vit_config.hidden_size
|
84 |
+
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
|
85 |
+
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
|
86 |
+
|
87 |
+
if config.interpolate_pos:
|
88 |
+
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
|
89 |
+
else:
|
90 |
+
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
|
91 |
+
|
92 |
+
self.config = config
|
93 |
+
self._init_weights()
|
94 |
+
|
95 |
+
def _init_weights(self):
|
96 |
+
if self.config.visual_gen:
|
97 |
+
nn.init.constant_(self.llm2vae.weight, 0)
|
98 |
+
nn.init.constant_(self.llm2vae.bias, 0)
|
99 |
+
|
100 |
+
def forward(
|
101 |
+
self,
|
102 |
+
sequence_length: int,
|
103 |
+
packed_text_ids: torch.LongTensor,
|
104 |
+
packed_text_indexes: torch.LongTensor,
|
105 |
+
sample_lens: List[int],
|
106 |
+
packed_position_ids: torch.LongTensor,
|
107 |
+
nested_attention_masks: List[torch.Tensor] = None,
|
108 |
+
split_lens: List[int] = None,
|
109 |
+
attn_modes: List[str] = None,
|
110 |
+
# for visual understanding
|
111 |
+
ce_loss_indexes: Optional[torch.BoolTensor] = None,
|
112 |
+
packed_label_ids: Optional[torch.LongTensor] = None,
|
113 |
+
packed_vit_tokens: Optional[torch.Tensor] = None,
|
114 |
+
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
|
115 |
+
packed_vit_position_ids: Optional[torch.LongTensor] = None,
|
116 |
+
vit_token_seqlens: Optional[torch.IntTensor] = None,
|
117 |
+
# for visual generation
|
118 |
+
padded_latent: Optional[torch.Tensor] = None,
|
119 |
+
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
|
120 |
+
packed_latent_position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
|
122 |
+
packed_timesteps: Optional[torch.LongTensor] = None,
|
123 |
+
mse_loss_indexes: Optional[torch.BoolTensor] = None,
|
124 |
+
) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
sequence_length: length of sequence.
|
128 |
+
packed_text_ids: 1-D int tensor, packed text token ids.
|
129 |
+
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
|
130 |
+
sample_lens: A list of N ints, length of each sample in packed_sequence.
|
131 |
+
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
|
132 |
+
-inf means ignore.
|
133 |
+
packed_position_ids: packed 1-D positions, an image has only one global position shared
|
134 |
+
by all latent tokens.
|
135 |
+
|
136 |
+
packed_vit_tokens: packed patchified image tokens for vit model.
|
137 |
+
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
|
138 |
+
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
|
139 |
+
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
|
140 |
+
packed_label_ids: 1-D int tensor, packed label token ids.
|
141 |
+
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
|
142 |
+
|
143 |
+
padded_latent: padded latent from VAE encoder.
|
144 |
+
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
|
145 |
+
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
|
146 |
+
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
|
147 |
+
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
|
148 |
+
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
|
149 |
+
"""
|
150 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
151 |
+
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
|
152 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
153 |
+
|
154 |
+
if nested_attention_masks is None:
|
155 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
156 |
+
seqlen = sum(sample_lens)
|
157 |
+
block_mask = create_block_mask(
|
158 |
+
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
|
159 |
+
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
|
160 |
+
)
|
161 |
+
attention_mask = block_mask
|
162 |
+
else:
|
163 |
+
attention_mask = nested_attention_masks
|
164 |
+
|
165 |
+
if self.config.visual_und:
|
166 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
167 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
168 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
169 |
+
packed_vit_token_embed = self.vit_model(
|
170 |
+
packed_pixel_values=packed_vit_tokens,
|
171 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
172 |
+
cu_seqlens=cu_seqlens,
|
173 |
+
max_seqlen=max_seqlen,
|
174 |
+
)
|
175 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
176 |
+
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
177 |
+
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
|
178 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
179 |
+
|
180 |
+
if self.config.visual_gen:
|
181 |
+
p = self.latent_patch_size
|
182 |
+
packed_latent = []
|
183 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
184 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
185 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
186 |
+
packed_latent.append(latent)
|
187 |
+
packed_latent_clean = torch.cat(packed_latent, dim=0)
|
188 |
+
|
189 |
+
noise = torch.randn_like(packed_latent_clean)
|
190 |
+
packed_timesteps = torch.sigmoid(packed_timesteps)
|
191 |
+
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
|
192 |
+
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
|
193 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
194 |
+
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
|
195 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
|
196 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
197 |
+
|
198 |
+
extra_inputs = {}
|
199 |
+
if self.use_moe:
|
200 |
+
packed_und_token_indexes = packed_text_indexes
|
201 |
+
if packed_vit_token_indexes is not None:
|
202 |
+
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
|
203 |
+
extra_inputs.update(
|
204 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
205 |
+
packed_gen_token_indexes=packed_vae_token_indexes,
|
206 |
+
)
|
207 |
+
|
208 |
+
last_hidden_state = self.language_model(
|
209 |
+
packed_sequence=packed_sequence,
|
210 |
+
sample_lens=sample_lens,
|
211 |
+
attention_mask=attention_mask,
|
212 |
+
packed_position_ids=packed_position_ids,
|
213 |
+
**extra_inputs,
|
214 |
+
)
|
215 |
+
|
216 |
+
mse = None
|
217 |
+
if self.config.visual_gen:
|
218 |
+
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
|
219 |
+
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
|
220 |
+
has_mse = packed_timesteps > 0
|
221 |
+
mse = (packed_mse_preds - target[has_mse]) ** 2
|
222 |
+
|
223 |
+
ce = None
|
224 |
+
if ce_loss_indexes is not None:
|
225 |
+
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
|
226 |
+
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
|
227 |
+
|
228 |
+
return dict(mse=mse, ce=ce)
|
229 |
+
|
230 |
+
|
231 |
+
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
|
232 |
+
packed_text_ids = list()
|
233 |
+
packed_text_position_ids = list()
|
234 |
+
text_token_lens = list()
|
235 |
+
packed_text_indexes = list()
|
236 |
+
packed_key_value_indexes = list()
|
237 |
+
|
238 |
+
curr = 0
|
239 |
+
newlens, new_rope = list(), list()
|
240 |
+
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
|
241 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
242 |
+
curr += curr_kvlen
|
243 |
+
|
244 |
+
text_ids = tokenizer.encode(prompt)
|
245 |
+
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
|
246 |
+
text_token_lens.append(len(text_ids))
|
247 |
+
packed_text_ids.extend(text_ids)
|
248 |
+
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
|
249 |
+
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
|
250 |
+
newlens.append(curr_kvlen + len(text_ids))
|
251 |
+
new_rope.append(curr_position_id + len(text_ids))
|
252 |
+
curr += len(text_ids)
|
253 |
+
|
254 |
+
generation_input = {
|
255 |
+
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
|
256 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
257 |
+
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
|
258 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
259 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
260 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
261 |
+
}
|
262 |
+
|
263 |
+
return generation_input, newlens, new_rope
|
264 |
+
|
265 |
+
@torch.no_grad
|
266 |
+
def forward_cache_update_text(
|
267 |
+
self,
|
268 |
+
past_key_values: NaiveCache,
|
269 |
+
packed_text_ids: torch.IntTensor,
|
270 |
+
packed_text_position_ids: torch.LongTensor,
|
271 |
+
text_token_lens: torch.LongTensor,
|
272 |
+
packed_text_indexes: torch.LongTensor,
|
273 |
+
packed_key_value_indexes: torch.LongTensor,
|
274 |
+
key_values_lens: torch.IntTensor,
|
275 |
+
):
|
276 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
277 |
+
|
278 |
+
extra_inputs = {}
|
279 |
+
if self.use_moe:
|
280 |
+
extra_inputs = {"mode": "und"}
|
281 |
+
|
282 |
+
output = self.language_model.forward_inference(
|
283 |
+
packed_query_sequence=packed_text_embedding,
|
284 |
+
query_lens=text_token_lens,
|
285 |
+
packed_query_position_ids=packed_text_position_ids,
|
286 |
+
packed_query_indexes=packed_text_indexes,
|
287 |
+
past_key_values=past_key_values,
|
288 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
289 |
+
key_values_lens=key_values_lens,
|
290 |
+
update_past_key_values=True,
|
291 |
+
is_causal=True,
|
292 |
+
**extra_inputs,
|
293 |
+
)
|
294 |
+
past_key_values = output.past_key_values
|
295 |
+
|
296 |
+
return past_key_values
|
297 |
+
|
298 |
+
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
|
299 |
+
packed_vit_token_indexes = list()
|
300 |
+
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
|
301 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
302 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
303 |
+
packed_key_value_indexes = list()
|
304 |
+
|
305 |
+
_curr = curr = 0
|
306 |
+
newlens, new_rope = list(), list()
|
307 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
308 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
309 |
+
curr += curr_kvlen
|
310 |
+
|
311 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
312 |
+
packed_text_indexes.append(_curr)
|
313 |
+
packed_indexes.append(curr)
|
314 |
+
curr += 1
|
315 |
+
_curr += 1
|
316 |
+
|
317 |
+
image_tensor = transforms(image)
|
318 |
+
vit_position_ids = self.get_flattened_position_ids(
|
319 |
+
image_tensor.size(1), image_tensor.size(2),
|
320 |
+
self.vit_patch_size,
|
321 |
+
max_num_patches_per_side=self.vit_max_num_patch_per_side
|
322 |
+
)
|
323 |
+
vit_tokens = patchify(image_tensor, self.vit_patch_size)
|
324 |
+
packed_vit_tokens.append(vit_tokens)
|
325 |
+
num_img_tokens = vit_tokens.shape[0]
|
326 |
+
packed_vit_position_ids.append(vit_position_ids)
|
327 |
+
vit_token_seqlens.append(num_img_tokens)
|
328 |
+
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
329 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
330 |
+
curr += num_img_tokens
|
331 |
+
_curr += num_img_tokens
|
332 |
+
|
333 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
334 |
+
packed_text_indexes.append(_curr)
|
335 |
+
packed_indexes.append(curr)
|
336 |
+
curr += 1
|
337 |
+
_curr += 1
|
338 |
+
|
339 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
340 |
+
packed_seqlens.append(num_img_tokens + 2)
|
341 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
342 |
+
new_rope.append(curr_position_id + 1)
|
343 |
+
|
344 |
+
generation_input = {
|
345 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
346 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
347 |
+
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
|
348 |
+
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
|
349 |
+
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
|
350 |
+
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
|
351 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
352 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
353 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
354 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
355 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
356 |
+
}
|
357 |
+
|
358 |
+
return generation_input, newlens, new_rope
|
359 |
+
|
360 |
+
@torch.no_grad
|
361 |
+
def forward_cache_update_vit(
|
362 |
+
self,
|
363 |
+
past_key_values: NaiveCache,
|
364 |
+
packed_text_ids: torch.LongTensor,
|
365 |
+
packed_text_indexes: torch.LongTensor,
|
366 |
+
packed_vit_tokens: torch.Tensor,
|
367 |
+
packed_vit_token_indexes: torch.LongTensor,
|
368 |
+
packed_vit_position_ids: torch.LongTensor,
|
369 |
+
vit_token_seqlens: torch.IntTensor,
|
370 |
+
packed_position_ids: torch.LongTensor,
|
371 |
+
packed_seqlens: torch.IntTensor,
|
372 |
+
packed_indexes: torch.LongTensor,
|
373 |
+
packed_key_value_indexes: torch.LongTensor,
|
374 |
+
key_values_lens: torch.IntTensor,
|
375 |
+
):
|
376 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
377 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
378 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
379 |
+
|
380 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
381 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
382 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
383 |
+
packed_vit_token_embed = self.vit_model(
|
384 |
+
packed_pixel_values=packed_vit_tokens,
|
385 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
386 |
+
cu_seqlens=cu_seqlens,
|
387 |
+
max_seqlen=max_seqlen,
|
388 |
+
)
|
389 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
390 |
+
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
391 |
+
packed_vit_token_embed = packed_vit_token_embed + pos_emb
|
392 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
393 |
+
|
394 |
+
extra_inputs = {}
|
395 |
+
if self.use_moe:
|
396 |
+
extra_inputs = {"mode": "und"}
|
397 |
+
|
398 |
+
output = self.language_model.forward_inference(
|
399 |
+
packed_query_sequence=packed_sequence,
|
400 |
+
query_lens=packed_seqlens,
|
401 |
+
packed_query_position_ids=packed_position_ids,
|
402 |
+
packed_query_indexes=packed_indexes,
|
403 |
+
past_key_values=past_key_values,
|
404 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
405 |
+
key_values_lens=key_values_lens,
|
406 |
+
update_past_key_values=True,
|
407 |
+
is_causal=False,
|
408 |
+
**extra_inputs,
|
409 |
+
)
|
410 |
+
past_key_values = output.past_key_values
|
411 |
+
|
412 |
+
return past_key_values
|
413 |
+
|
414 |
+
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
|
415 |
+
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
|
416 |
+
packed_vae_token_indexes = list()
|
417 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
418 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
419 |
+
packed_key_value_indexes = list()
|
420 |
+
|
421 |
+
_curr = curr = 0
|
422 |
+
vae_image_tensors = list()
|
423 |
+
newlens, new_rope = list(), list()
|
424 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
425 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
426 |
+
curr += curr_kvlen
|
427 |
+
|
428 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
429 |
+
packed_text_indexes.append(_curr)
|
430 |
+
packed_indexes.append(curr)
|
431 |
+
curr += 1
|
432 |
+
_curr += 1
|
433 |
+
|
434 |
+
image_tensor = transforms(image)
|
435 |
+
vae_image_tensors.append(image_tensor)
|
436 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
437 |
+
image_tensor.size(1), image_tensor.size(2),
|
438 |
+
self.latent_downsample,
|
439 |
+
max_num_patches_per_side=self.max_latent_size
|
440 |
+
)
|
441 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
442 |
+
H, W = image_tensor.shape[1:]
|
443 |
+
h = H // self.latent_downsample
|
444 |
+
w = W // self.latent_downsample
|
445 |
+
patchified_vae_latent_shapes.append((h, w))
|
446 |
+
|
447 |
+
num_img_tokens = w * h
|
448 |
+
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
449 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
450 |
+
curr += num_img_tokens
|
451 |
+
_curr += num_img_tokens
|
452 |
+
|
453 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
454 |
+
packed_text_indexes.append(_curr)
|
455 |
+
packed_indexes.append(curr)
|
456 |
+
curr += 1
|
457 |
+
_curr += 1
|
458 |
+
|
459 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
460 |
+
packed_seqlens.append(num_img_tokens + 2)
|
461 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
462 |
+
new_rope.append(curr_position_id + 1)
|
463 |
+
|
464 |
+
image_sizes = [item.shape for item in vae_image_tensors]
|
465 |
+
max_image_size = [max(item) for item in list(zip(*image_sizes))]
|
466 |
+
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
|
467 |
+
for i, image_tensor in enumerate(vae_image_tensors):
|
468 |
+
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
|
469 |
+
|
470 |
+
generation_input = {
|
471 |
+
"padded_images": padded_images,
|
472 |
+
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
|
473 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
474 |
+
"packed_timesteps": torch.tensor([timestep]),
|
475 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
476 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
477 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
478 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
479 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
480 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
481 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
482 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
483 |
+
}
|
484 |
+
|
485 |
+
return generation_input, newlens, new_rope
|
486 |
+
|
487 |
+
@torch.no_grad
|
488 |
+
def forward_cache_update_vae(
|
489 |
+
self,
|
490 |
+
vae_model,
|
491 |
+
past_key_values: NaiveCache,
|
492 |
+
padded_images: torch.Tensor,
|
493 |
+
patchified_vae_latent_shapes: List,
|
494 |
+
packed_vae_position_ids: torch.LongTensor,
|
495 |
+
packed_timesteps: torch.Tensor,
|
496 |
+
packed_vae_token_indexes: torch.LongTensor,
|
497 |
+
packed_text_ids: torch.LongTensor,
|
498 |
+
packed_text_indexes: torch.LongTensor,
|
499 |
+
packed_position_ids: torch.LongTensor,
|
500 |
+
packed_seqlens: torch.IntTensor,
|
501 |
+
packed_indexes: torch.LongTensor,
|
502 |
+
key_values_lens: torch.IntTensor,
|
503 |
+
packed_key_value_indexes: torch.Tensor,
|
504 |
+
):
|
505 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
506 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
507 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
508 |
+
|
509 |
+
padded_latent = vae_model.encode(padded_images)
|
510 |
+
|
511 |
+
p = self.latent_patch_size
|
512 |
+
packed_latent = list()
|
513 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
514 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
515 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
516 |
+
packed_latent.append(latent)
|
517 |
+
packed_latent = torch.cat(packed_latent, dim=0)
|
518 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
519 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
520 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
|
521 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
522 |
+
|
523 |
+
extra_inputs = {}
|
524 |
+
if self.use_moe:
|
525 |
+
extra_inputs = {
|
526 |
+
"mode": "gen",
|
527 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
528 |
+
"packed_text_indexes": packed_text_indexes
|
529 |
+
}
|
530 |
+
|
531 |
+
output = self.language_model.forward_inference(
|
532 |
+
packed_query_sequence=packed_sequence,
|
533 |
+
query_lens=packed_seqlens,
|
534 |
+
packed_query_position_ids=packed_position_ids,
|
535 |
+
packed_query_indexes=packed_indexes,
|
536 |
+
past_key_values=past_key_values,
|
537 |
+
key_values_lens=key_values_lens,
|
538 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
539 |
+
update_past_key_values=True,
|
540 |
+
is_causal=False,
|
541 |
+
**extra_inputs,
|
542 |
+
)
|
543 |
+
past_key_values = output.past_key_values
|
544 |
+
|
545 |
+
return past_key_values
|
546 |
+
|
547 |
+
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
|
548 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
549 |
+
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
|
550 |
+
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
|
551 |
+
packed_key_value_indexes = list()
|
552 |
+
|
553 |
+
query_curr = curr = 0
|
554 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
555 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
556 |
+
curr += curr_kvlen
|
557 |
+
|
558 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
559 |
+
packed_text_indexes.append(query_curr)
|
560 |
+
packed_indexes.append(curr)
|
561 |
+
curr += 1
|
562 |
+
query_curr += 1
|
563 |
+
|
564 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
565 |
+
H, W,
|
566 |
+
self.latent_downsample,
|
567 |
+
max_num_patches_per_side=self.max_latent_size
|
568 |
+
)
|
569 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
570 |
+
|
571 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
572 |
+
num_image_tokens = h * w
|
573 |
+
packed_init_noises.append(
|
574 |
+
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
|
575 |
+
)
|
576 |
+
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
|
577 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
578 |
+
curr += num_image_tokens
|
579 |
+
query_curr += num_image_tokens
|
580 |
+
|
581 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
582 |
+
packed_text_indexes.append(query_curr)
|
583 |
+
packed_indexes.append(curr)
|
584 |
+
curr += 1
|
585 |
+
query_curr += 1
|
586 |
+
|
587 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
588 |
+
packed_seqlens.append(num_image_tokens + 2)
|
589 |
+
|
590 |
+
generation_input = {
|
591 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
592 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
593 |
+
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
|
594 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
595 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
596 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
597 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
598 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
599 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
600 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
601 |
+
}
|
602 |
+
|
603 |
+
return generation_input
|
604 |
+
|
605 |
+
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
|
606 |
+
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
|
607 |
+
|
608 |
+
query_curr = curr = 0
|
609 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
610 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
611 |
+
curr += curr_kvlen
|
612 |
+
|
613 |
+
packed_indexes.append(curr)
|
614 |
+
curr += 1
|
615 |
+
query_curr += 1
|
616 |
+
|
617 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
618 |
+
num_image_tokens = h * w
|
619 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
620 |
+
curr += num_image_tokens
|
621 |
+
query_curr += num_image_tokens
|
622 |
+
|
623 |
+
packed_indexes.append(curr)
|
624 |
+
curr += 1
|
625 |
+
query_curr += 1
|
626 |
+
|
627 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
628 |
+
|
629 |
+
generation_input = {
|
630 |
+
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
631 |
+
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
632 |
+
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
633 |
+
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
634 |
+
}
|
635 |
+
|
636 |
+
return generation_input
|
637 |
+
|
638 |
+
@torch.no_grad
|
639 |
+
def generate_image(
|
640 |
+
self,
|
641 |
+
packed_text_ids: torch.LongTensor,
|
642 |
+
packed_text_indexes: torch.LongTensor,
|
643 |
+
packed_init_noises: torch.Tensor,
|
644 |
+
packed_vae_position_ids: torch.LongTensor,
|
645 |
+
packed_vae_token_indexes: torch.LongTensor,
|
646 |
+
packed_seqlens: torch.IntTensor,
|
647 |
+
packed_position_ids: torch.LongTensor,
|
648 |
+
packed_indexes: torch.LongTensor,
|
649 |
+
past_key_values: NaiveCache,
|
650 |
+
key_values_lens: torch.IntTensor,
|
651 |
+
packed_key_value_indexes: torch.LongTensor,
|
652 |
+
num_timesteps: int = 24,
|
653 |
+
timestep_shift: float = 1.0,
|
654 |
+
cfg_renorm_min: float = 0.0,
|
655 |
+
cfg_renorm_type: str = "global",
|
656 |
+
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
|
657 |
+
# cfg_text
|
658 |
+
cfg_text_scale: float = 1.0,
|
659 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
660 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
661 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
662 |
+
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
|
663 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
664 |
+
# cfg_img
|
665 |
+
cfg_img_scale: float = 1.0,
|
666 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
667 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
668 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
669 |
+
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
|
670 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
671 |
+
cfg_type: str = "parallel",
|
672 |
+
):
|
673 |
+
x_t = packed_init_noises
|
674 |
+
|
675 |
+
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
|
676 |
+
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
|
677 |
+
dts = timesteps[:-1] - timesteps[1:]
|
678 |
+
timesteps = timesteps[:-1]
|
679 |
+
|
680 |
+
for i, t in enumerate(timesteps):
|
681 |
+
|
682 |
+
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
|
683 |
+
if t > cfg_interval[0] and t <= cfg_interval[1]:
|
684 |
+
cfg_text_scale_ = cfg_text_scale
|
685 |
+
cfg_img_scale_ = cfg_img_scale
|
686 |
+
else:
|
687 |
+
cfg_text_scale_ = 1.0
|
688 |
+
cfg_img_scale_ = 1.0
|
689 |
+
v_t = self._forward_flow(
|
690 |
+
x_t=x_t,
|
691 |
+
timestep=timestep,
|
692 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
693 |
+
packed_vae_position_ids=packed_vae_position_ids,
|
694 |
+
packed_text_ids=packed_text_ids,
|
695 |
+
packed_text_indexes=packed_text_indexes,
|
696 |
+
packed_position_ids=packed_position_ids,
|
697 |
+
packed_indexes=packed_indexes,
|
698 |
+
packed_seqlens=packed_seqlens,
|
699 |
+
key_values_lens=key_values_lens,
|
700 |
+
past_key_values=past_key_values,
|
701 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
702 |
+
cfg_renorm_min=cfg_renorm_min,
|
703 |
+
cfg_renorm_type=cfg_renorm_type,
|
704 |
+
# cfg_text
|
705 |
+
cfg_text_scale=cfg_text_scale_,
|
706 |
+
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
|
707 |
+
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
|
708 |
+
cfg_text_key_values_lens=cfg_text_key_values_lens,
|
709 |
+
cfg_text_past_key_values=cfg_text_past_key_values,
|
710 |
+
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
711 |
+
# cfg_img
|
712 |
+
cfg_img_scale=cfg_img_scale_,
|
713 |
+
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
|
714 |
+
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
|
715 |
+
cfg_img_key_values_lens=cfg_img_key_values_lens,
|
716 |
+
cfg_img_past_key_values=cfg_img_past_key_values,
|
717 |
+
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
718 |
+
cfg_type=cfg_type,
|
719 |
+
)
|
720 |
+
|
721 |
+
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
|
722 |
+
|
723 |
+
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
|
724 |
+
return unpacked_latent
|
725 |
+
|
726 |
+
@torch.no_grad
|
727 |
+
def _forward_flow(
|
728 |
+
self,
|
729 |
+
x_t: torch.Tensor,
|
730 |
+
timestep: torch.LongTensor,
|
731 |
+
packed_vae_token_indexes: torch.LongTensor,
|
732 |
+
packed_vae_position_ids: torch.LongTensor,
|
733 |
+
packed_text_ids: torch.LongTensor,
|
734 |
+
packed_text_indexes: torch.LongTensor,
|
735 |
+
packed_indexes: torch.LongTensor,
|
736 |
+
packed_position_ids: torch.LongTensor,
|
737 |
+
packed_seqlens: torch.IntTensor,
|
738 |
+
key_values_lens: torch.IntTensor,
|
739 |
+
past_key_values: NaiveCache,
|
740 |
+
packed_key_value_indexes: torch.LongTensor,
|
741 |
+
cfg_renorm_min: float = 0.0,
|
742 |
+
cfg_renorm_type: str = "global",
|
743 |
+
# cfg_text
|
744 |
+
cfg_text_scale: float = 1.0,
|
745 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
746 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
747 |
+
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
|
748 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
749 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
750 |
+
# cfg_img
|
751 |
+
cfg_img_scale: float = 1.0,
|
752 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
753 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
754 |
+
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
|
755 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
756 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
757 |
+
cfg_type: str = "parallel",
|
758 |
+
):
|
759 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
760 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
761 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
762 |
+
|
763 |
+
assert timestep.unique().shape[0] == 1
|
764 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
765 |
+
packed_timestep_embeds = self.time_embedder(timestep)
|
766 |
+
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
|
767 |
+
packed_sequence[packed_vae_token_indexes] = x_t
|
768 |
+
|
769 |
+
extra_inputs = {}
|
770 |
+
if self.use_moe:
|
771 |
+
extra_inputs = {
|
772 |
+
"mode": "gen",
|
773 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
774 |
+
"packed_text_indexes": packed_text_indexes
|
775 |
+
}
|
776 |
+
|
777 |
+
output = self.language_model.forward_inference(
|
778 |
+
packed_query_sequence=packed_sequence,
|
779 |
+
query_lens=packed_seqlens,
|
780 |
+
packed_query_position_ids=packed_position_ids,
|
781 |
+
packed_query_indexes=packed_indexes,
|
782 |
+
past_key_values=past_key_values,
|
783 |
+
key_values_lens=key_values_lens,
|
784 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
785 |
+
update_past_key_values=False,
|
786 |
+
is_causal=False,
|
787 |
+
**extra_inputs,
|
788 |
+
)
|
789 |
+
v_t = self.llm2vae(output.packed_query_sequence)
|
790 |
+
v_t = v_t[packed_vae_token_indexes]
|
791 |
+
|
792 |
+
if cfg_text_scale > 1.0:
|
793 |
+
cfg_text_output = self.language_model.forward_inference(
|
794 |
+
packed_query_sequence=packed_sequence,
|
795 |
+
query_lens=packed_seqlens,
|
796 |
+
packed_query_position_ids=cfg_text_packed_position_ids,
|
797 |
+
packed_query_indexes=cfg_text_packed_query_indexes,
|
798 |
+
past_key_values=cfg_text_past_key_values,
|
799 |
+
key_values_lens=cfg_text_key_values_lens,
|
800 |
+
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
801 |
+
update_past_key_values=False,
|
802 |
+
is_causal=False,
|
803 |
+
**extra_inputs,
|
804 |
+
)
|
805 |
+
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
|
806 |
+
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
|
807 |
+
|
808 |
+
if cfg_img_scale > 1.0:
|
809 |
+
cfg_img_output = self.language_model.forward_inference(
|
810 |
+
packed_query_sequence=packed_sequence,
|
811 |
+
query_lens=packed_seqlens,
|
812 |
+
packed_query_position_ids=cfg_img_packed_position_ids,
|
813 |
+
packed_query_indexes=cfg_img_packed_query_indexes,
|
814 |
+
past_key_values=cfg_img_past_key_values,
|
815 |
+
key_values_lens=cfg_img_key_values_lens,
|
816 |
+
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
817 |
+
update_past_key_values=False,
|
818 |
+
is_causal=False,
|
819 |
+
**extra_inputs,
|
820 |
+
)
|
821 |
+
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
|
822 |
+
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
|
823 |
+
|
824 |
+
if cfg_text_scale > 1.0:
|
825 |
+
if cfg_renorm_type == "text_channel":
|
826 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
827 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
828 |
+
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
|
829 |
+
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
830 |
+
v_t_text = v_t_text_ * scale
|
831 |
+
if cfg_img_scale > 1.0:
|
832 |
+
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
|
833 |
+
else:
|
834 |
+
v_t = v_t_text
|
835 |
+
else:
|
836 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
837 |
+
|
838 |
+
if cfg_img_scale > 1.0:
|
839 |
+
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
|
840 |
+
else:
|
841 |
+
v_t_ = v_t_text_
|
842 |
+
|
843 |
+
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
|
844 |
+
if cfg_renorm_type == "global":
|
845 |
+
norm_v_t = torch.norm(v_t)
|
846 |
+
norm_v_t_ = torch.norm(v_t_)
|
847 |
+
elif cfg_renorm_type == "channel":
|
848 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
849 |
+
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
|
850 |
+
else:
|
851 |
+
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
|
852 |
+
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
853 |
+
v_t = v_t_ * scale
|
854 |
+
else:
|
855 |
+
# No CFG
|
856 |
+
pass
|
857 |
+
|
858 |
+
return v_t
|
859 |
+
|
860 |
+
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
|
861 |
+
packed_start_tokens, packed_key_value_indexes = list(), list()
|
862 |
+
packed_query_position_ids = list()
|
863 |
+
|
864 |
+
curr = 0
|
865 |
+
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
|
866 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
867 |
+
packed_start_tokens.append(new_token_ids['bos_token_id'])
|
868 |
+
packed_query_position_ids.append(curr_position_id)
|
869 |
+
curr += curr_kvlen
|
870 |
+
|
871 |
+
generation_input = {
|
872 |
+
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
|
873 |
+
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
|
874 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
875 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
876 |
+
}
|
877 |
+
|
878 |
+
return generation_input
|
879 |
+
|
880 |
+
@torch.no_grad
|
881 |
+
def generate_text(
|
882 |
+
self,
|
883 |
+
past_key_values: NaiveCache,
|
884 |
+
packed_key_value_indexes: torch.LongTensor,
|
885 |
+
key_values_lens: torch.IntTensor,
|
886 |
+
packed_start_tokens: torch.LongTensor,
|
887 |
+
packed_query_position_ids: torch.LongTensor,
|
888 |
+
max_length: int,
|
889 |
+
do_sample: bool = False,
|
890 |
+
temperature: float = 1.0,
|
891 |
+
end_token_id: int = None,
|
892 |
+
):
|
893 |
+
"""
|
894 |
+
Generates text token by token in a streaming fashion.
|
895 |
+
|
896 |
+
This function is a generator that yields one token at a time. It replicates
|
897 |
+
the behavior of the original batch generation function, including the handling
|
898 |
+
of start tokens and the end-of-sequence token.
|
899 |
+
"""
|
900 |
+
curr_tokens = packed_start_tokens
|
901 |
+
|
902 |
+
for _ in range(max_length):
|
903 |
+
# The original function would append `curr_tokens` to a list at this point.
|
904 |
+
# Instead, we yield it to the caller, enabling streaming.
|
905 |
+
yield curr_tokens
|
906 |
+
|
907 |
+
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
|
908 |
+
query_lens = torch.ones_like(curr_tokens)
|
909 |
+
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
|
910 |
+
0, len(key_values_lens),
|
911 |
+
device=key_values_lens.device,
|
912 |
+
dtype=key_values_lens.dtype
|
913 |
+
)
|
914 |
+
|
915 |
+
# This block modifies packed_key_value_indexes before the forward pass,
|
916 |
+
# preserving the specific logic for NaViT-style packed inputs.
|
917 |
+
# The typo 'uppacked' is kept to match the original source code.
|
918 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
919 |
+
for i in range(len(uppacked)):
|
920 |
+
uppacked[i] += i
|
921 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
922 |
+
|
923 |
+
extra_inputs = {}
|
924 |
+
if self.use_moe:
|
925 |
+
extra_inputs = {"mode": "und"}
|
926 |
+
|
927 |
+
output = self.language_model.forward_inference(
|
928 |
+
packed_query_sequence=packed_text_embedding,
|
929 |
+
query_lens=query_lens,
|
930 |
+
packed_query_position_ids=packed_query_position_ids,
|
931 |
+
packed_query_indexes=packed_query_indexes,
|
932 |
+
past_key_values=past_key_values,
|
933 |
+
key_values_lens=key_values_lens,
|
934 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
935 |
+
update_past_key_values=True,
|
936 |
+
is_causal=True,
|
937 |
+
**extra_inputs,
|
938 |
+
)
|
939 |
+
past_key_values = output.past_key_values
|
940 |
+
packed_query_sequence = output.packed_query_sequence
|
941 |
+
pred_logits = self.language_model.lm_head(packed_query_sequence)
|
942 |
+
|
943 |
+
# Sample the next token
|
944 |
+
if do_sample:
|
945 |
+
probs = nn.functional.softmax(pred_logits / temperature, dim=-1)
|
946 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
947 |
+
else:
|
948 |
+
next_tokens = torch.argmax(pred_logits, dim=-1)
|
949 |
+
|
950 |
+
# The stop condition is checked on the newly generated token. If it's the
|
951 |
+
# end token, we break the loop. This token will not be yielded.
|
952 |
+
if end_token_id is not None and next_tokens[0] == end_token_id: # only support batch=1
|
953 |
+
break
|
954 |
+
|
955 |
+
# This block updates the state variables for the next iteration. It reads
|
956 |
+
# the already-modified `packed_key_value_indexes` and updates it further.
|
957 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
958 |
+
for i in range(len(uppacked)):
|
959 |
+
uppacked[i] = torch.cat(
|
960 |
+
[uppacked[i], torch.tensor([uppacked[i][-1] + 1], device=uppacked[i].device)], dim=0
|
961 |
+
)
|
962 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
963 |
+
key_values_lens = key_values_lens + 1
|
964 |
+
packed_query_position_ids = packed_query_position_ids + 1
|
965 |
+
|
966 |
+
# The newly generated token becomes the input for the next loop iteration.
|
967 |
+
curr_tokens = next_tokens
|
968 |
+
|
969 |
+
# for evaluation
|
970 |
+
@torch.no_grad()
|
971 |
+
def chat(
|
972 |
+
self,
|
973 |
+
tokenizer,
|
974 |
+
new_token_ids,
|
975 |
+
image_transform,
|
976 |
+
images,
|
977 |
+
prompt,
|
978 |
+
max_length: int,
|
979 |
+
do_sample: bool = False,
|
980 |
+
temperature: float = 1.0,
|
981 |
+
):
|
982 |
+
device = next(self.parameters()).device
|
983 |
+
|
984 |
+
if isinstance(new_token_ids, dict):
|
985 |
+
for k, v in new_token_ids.items():
|
986 |
+
if torch.is_tensor(v):
|
987 |
+
new_token_ids[k] = v.to(device)
|
988 |
+
elif torch.is_tensor(new_token_ids):
|
989 |
+
new_token_ids = new_token_ids.to(device)
|
990 |
+
|
991 |
+
# prefill
|
992 |
+
past_key_values = NaiveCache(self.config.llm_config.num_hidden_layers)
|
993 |
+
newlens = [0]
|
994 |
+
new_rope = [0]
|
995 |
+
|
996 |
+
# add images
|
997 |
+
for image in images:
|
998 |
+
generation_input, newlens, new_rope = self.prepare_vit_images(
|
999 |
+
curr_kvlens=newlens,
|
1000 |
+
curr_rope=new_rope,
|
1001 |
+
images=[image],
|
1002 |
+
transforms=image_transform,
|
1003 |
+
new_token_ids=new_token_ids,
|
1004 |
+
)
|
1005 |
+
for k, v in generation_input.items():
|
1006 |
+
if torch.is_tensor(v):
|
1007 |
+
generation_input[k] = v.to(device)
|
1008 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
1009 |
+
past_key_values = self.forward_cache_update_vit(past_key_values, **generation_input)
|
1010 |
+
|
1011 |
+
# add text
|
1012 |
+
generation_input, newlens, new_rope = self.prepare_prompts(
|
1013 |
+
curr_kvlens=newlens,
|
1014 |
+
curr_rope=new_rope,
|
1015 |
+
prompts=[prompt],
|
1016 |
+
tokenizer=tokenizer,
|
1017 |
+
new_token_ids=new_token_ids,
|
1018 |
+
)
|
1019 |
+
for k, v in generation_input.items():
|
1020 |
+
if torch.is_tensor(v):
|
1021 |
+
generation_input[k] = v.to(device)
|
1022 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
1023 |
+
past_key_values = self.forward_cache_update_text(past_key_values, **generation_input)
|
1024 |
+
|
1025 |
+
# decode
|
1026 |
+
generation_input = self.prepare_start_tokens(newlens, new_rope, new_token_ids)
|
1027 |
+
for k, v in generation_input.items():
|
1028 |
+
if torch.is_tensor(v):
|
1029 |
+
generation_input[k] = v.to(device)
|
1030 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
1031 |
+
for unpacked_latent in self.generate_text(
|
1032 |
+
past_key_values=past_key_values,
|
1033 |
+
max_length=max_length,
|
1034 |
+
do_sample=do_sample,
|
1035 |
+
temperature=temperature,
|
1036 |
+
end_token_id=new_token_ids['eos_token_id'],
|
1037 |
+
**generation_input,
|
1038 |
+
):
|
1039 |
+
output = tokenizer.decode(unpacked_latent[:,0])
|
1040 |
yield output
|