Spaces:
Build error
Build error
File size: 29,634 Bytes
79fb67e e6af450 79fb67e e6af450 0c38e11 e6af450 79fb67e 9a02bb8 79fb67e 9a02bb8 79fb67e 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 e6af450 71c41c2 0c38e11 e6af450 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 71c41c2 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 e6af450 0c38e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import spaces
import gradio as gr
import numpy as np
import os
import torch
import random
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image
import uuid
from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel.qwen2_navit import NaiveCache
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from huggingface_hub import snapshot_download
save_dir = "./model"
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
cache_dir = save_dir + "/cache"
if not os.path.exists(os.path.join(save_dir, "ema.safetensors")):
print(f"Downloading model from {repo_id} to {save_dir}")
snapshot_download(cache_dir=cache_dir,
local_dir=save_dir,
repo_id=repo_id,
local_dir_use_symlinks=False,
resume_download=True,
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)
else:
print(f"Model found at {save_dir}")
model_path = "./model"
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=64,
)
with init_empty_weights():
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)
device_map = infer_auto_device_map(
model,
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
)
same_device_modules = [
'language_model.model.embed_tokens',
'time_embedder',
'latent_pos_embed',
'vae2llm',
'llm2vae',
'connector',
'vit_pos_embed'
]
if torch.cuda.device_count() == 1:
first_device = device_map.get(same_device_modules[0], "cuda:0")
for k in same_device_modules:
device_map[k] = first_device
else:
# Ensure all same_device_modules are on the same device if they exist in device_map
# Find the device for the first module in the list that is actually in the device_map
first_assigned_device = None
for k_module in same_device_modules:
if k_module in device_map:
first_assigned_device = device_map[k_module]
break
if first_assigned_device is not None:
for k_module in same_device_modules:
if k_module in device_map: # Only assign if the module is part of the device_map
device_map[k_module] = first_assigned_device
model = load_checkpoint_and_dispatch(
model,
checkpoint=os.path.join(model_path, "ema.safetensors"),
device_map=device_map,
offload_buffers=True,
dtype=torch.bfloat16,
force_hooks=True,
).eval()
inferencer = InterleaveInferencer(
model=model,
vae_model=vae_model,
tokenizer=tokenizer,
vae_transform=vae_transform,
vit_transform=vit_transform,
new_token_ids=new_token_ids,
)
def set_seed(seed):
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed
# --- Backend Functions (Adapted from original app.py) ---
@spaces.GPU(duration=90)
def call_text_to_image(prompt, show_thinking, cfg_text_scale, cfg_interval,
timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
max_think_token_n, do_sample, text_temperature, seed, image_ratio):
set_seed(seed)
image_shapes = (1024, 1024)
if image_ratio == "4:3": image_shapes = (768, 1024)
elif image_ratio == "3:4": image_shapes = (1024, 768)
elif image_ratio == "16:9": image_shapes = (576, 1024)
elif image_ratio == "9:16": image_shapes = (1024, 576)
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_interval=[cfg_interval, 1.0],
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
image_shapes=image_shapes,
)
result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
return result.get("image", None), result.get("text", None) # text is thinking
@spaces.GPU(duration=90)
def call_image_understanding(image, prompt, show_thinking, do_sample, text_temperature, max_new_tokens, seed):
set_seed(seed)
if image is None: return "Please upload an image.", None
if isinstance(image, np.ndarray): image = Image.fromarray(image)
image = pil_img2rgb(image)
inference_hyper = dict(
do_sample=do_sample,
text_temperature=text_temperature,
max_think_token_n=max_new_tokens,
)
result = inferencer(image=image, text=prompt, think=show_thinking, understanding_output=True, **inference_hyper)
return result.get("text", None), None # Main output is text, thinking is part of it if show_thinking=True
@spaces.GPU(duration=90)
def call_edit_image(image, prompt, show_thinking, cfg_text_scale, cfg_img_scale, cfg_interval,
timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
max_think_token_n, do_sample, text_temperature, seed):
set_seed(seed)
if image is None: return "Please upload an image.", None, None
if isinstance(image, np.ndarray): image = Image.fromarray(image)
image = pil_img2rgb(image)
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=[cfg_interval, 1.0],
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
return result.get("image", None), result.get("text", None) # text is thinking
# --- Gradio UI ---
DEFAULT_WELCOME_MESSAGE = {
"role": "assistant",
"content": "Hello! I am BAGEL, your multimodal assistant. How can I help you today? Select a mode and enter your prompt.",
"key": "welcome"
}
class GradioApp:
def __init__(self):
self.current_conversation_id = None
self.conversation_contexts = {}
self.conversations_list = [] # For the sidebar
def _get_current_history(self):
if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
return self.conversation_contexts[self.current_conversation_id]["history"]
return []
def _get_current_settings(self):
if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
return self.conversation_contexts[self.current_conversation_id].get("settings", {})
return {}
def _update_conversation_list_ui(self):
return gr.update(choices=[(c['label'], c['key']) for c in self.conversations_list], value=self.current_conversation_id)
def add_message(self, text_input, image_input, mode,
# TTI params
tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio,
# Edit params
edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed,
# Understand params
und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed
):
if not text_input and not (mode in ["Image Edit", "Image Understanding"] and image_input):
gr.Warning("Please enter a prompt or upload an image for Edit/Understanding modes.")
# Need to yield original state for all outputs if we return early
# This part is tricky with dynamic outputs, might need a dummy update for all
# For simplicity, let's assume user always provides some input
# A better way is to disable submit button if input is invalid
return self._get_current_history(), gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input
if not self.current_conversation_id:
self.new_chat_session(text_input[:30] if text_input else "New Chat") # Create a new chat if none exists
history = self._get_current_history()
# Store settings for this turn
# This is simplified; best-gradio-ui.py stores settings per conversation
current_turn_settings = {
"mode": mode,
# Store PIL image directly if needed, or handle path carefully
"image_input": image_input, # Now storing the PIL image or None
# TTI
"tti_show_thinking": tti_show_thinking, "tti_cfg_text_scale": tti_cfg_text_scale, "tti_cfg_interval": tti_cfg_interval, "tti_timestep_shift": tti_timestep_shift, "tti_num_timesteps": tti_num_timesteps, "tti_cfg_renorm_min": tti_cfg_renorm_min, "tti_cfg_renorm_type": tti_cfg_renorm_type, "tti_max_think_token_n": tti_max_think_token_n, "tti_do_sample": tti_do_sample, "tti_text_temperature": tti_text_temperature, "tti_seed": tti_seed, "tti_image_ratio": tti_image_ratio,
# Edit
"edit_show_thinking": edit_show_thinking, "edit_cfg_text_scale": edit_cfg_text_scale, "edit_cfg_img_scale": edit_cfg_img_scale, "edit_cfg_interval": edit_cfg_interval, "edit_timestep_shift": edit_timestep_shift, "edit_num_timesteps": edit_num_timesteps, "edit_cfg_renorm_min": edit_cfg_renorm_min, "edit_cfg_renorm_type": edit_cfg_renorm_type, "edit_max_think_token_n": edit_max_think_token_n, "edit_do_sample": edit_do_sample, "edit_text_temperature": edit_text_temperature, "edit_seed": edit_seed,
# Understand
"und_show_thinking": und_show_thinking, "und_do_sample": und_do_sample, "und_text_temperature": und_text_temperature, "und_max_new_tokens": und_max_new_tokens, "und_seed": und_seed
}
self.conversation_contexts[self.current_conversation_id]["settings"] = current_turn_settings
user_content_list = []
if text_input:
user_content_list.append({"type": "text", "text": text_input})
if image_input and mode in ["Image Edit", "Image Understanding"]:
# For 'messages' format, images are typically handled by passing them as part of a list of content dicts.
# Gradio's Chatbot with type='messages' can render PIL Images or file paths directly in the 'content' list.
user_content_list.append({"type": "image", "image": image_input}) # Assuming image_input is PIL
# Construct the user message for history
# If only text, content can be a string. If mixed, it's a list of dicts.
user_message_for_history = {
"role": "user",
"content": text_input if not image_input else user_content_list,
"key": str(uuid.uuid4())
}
if not text_input and image_input:
user_message_for_history["content"] = user_content_list
elif not user_content_list:
# Handle case where there's no input at all, though prior checks should prevent this.
gr.Warning("No input provided.")
return self._get_current_history(), gr.update(value=None), gr.update(value=None)
history.append(user_message_for_history)
history.append({"role": "assistant", "content": "Processing...", "key": str(uuid.uuid4())})
yield history, gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input (clear inputs)
# Call backend
try:
output_image = None
output_text = None
thinking_text = None
# image_input is already a PIL image from the gr.Image component with type="pil"
pil_image_input = image_input
if mode == "Text to Image":
output_image, thinking_text = call_text_to_image(text_input, tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio)
elif mode == "Image Edit":
if not pil_image_input:
output_text = "Error: Image required for Image Edit mode."
else:
output_image, thinking_text = call_edit_image(pil_image_input, text_input, edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed)
elif mode == "Image Understanding":
if not pil_image_input:
output_text = "Error: Image required for Image Understanding mode."
else:
output_text, _ = call_image_understanding(pil_image_input, text_input, und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed)
# For VLM, the main output is text, thinking might be part of it or not separately returned
# depending on `inferencer`'s behavior with `understanding_output=True`
if und_show_thinking and output_text and "Thinking:" in output_text: # crude check
parts = output_text.split("Thinking:", 1)
if len(parts) > 1:
thinking_text = "Thinking:" + parts[1].split("\nAnswer:")[0] if "\nAnswer:" in parts[1] else parts[1]
output_text = parts[0].strip() + ("\nAnswer:" + output_text.split("\nAnswer:")[1] if "\nAnswer:" in output_text else "")
else:
thinking_text = None # Or handle as part of main output_text
bot_response_content = []
if thinking_text:
# For 'messages' type, each part of the content is a dict in a list
bot_response_content.append({"type": "text", "text": f"**Thinking Process:**\n{thinking_text}"})
if output_text:
bot_response_content.append({"type": "text", "text": output_text})
if output_image: # output_image should be a PIL Image
bot_response_content.append({"type": "image", "image": output_image})
if not bot_response_content:
bot_response_content.append({"type": "text", "text": "(No output generated)"})
# Update the last message (which was "Processing...")
history[-1]["content"] = bot_response_content_list[0]["text"] if len(bot_response_content_list) == 1 and bot_response_content_list[0]["type"] == "text" else bot_response_content_list
except Exception as e:
print(f"Error during processing: {e}")
history[-1]["content"] = [{"type": "text", "content": f"Error: {str(e)}"}]
history[-1]["loading"] = False
raise gr.Error(f"Processing Error: {str(e)}")
yield history, gr.update(value=None), gr.update(value=None)
def new_chat_session(self, label="New Chat"):
session_id = str(uuid.uuid4())
self.current_conversation_id = session_id
self.conversation_contexts[session_id] = {
"history": [DEFAULT_WELCOME_MESSAGE.copy()],
"settings": {} # Initialize with default settings if any
}
# Ensure label is unique if needed, or just use the provided one
# For simplicity, we allow duplicate labels for now.
new_conv_entry = {"label": label if label else f"Chat {len(self.conversations_list) + 1}", "key": session_id}
self.conversations_list.insert(0, new_conv_entry) # Add to top
return self._get_current_history(), self._update_conversation_list_ui()
def change_chat_session(self, session_id):
if session_id and session_id in self.conversation_contexts:
self.current_conversation_id = session_id
# Potentially update hyperparameter UI elements based on loaded session_settings
# For now, just load history
return self._get_current_history()
return self._get_current_history() # No change or invalid ID
def clear_history(self):
if self.current_conversation_id:
self.conversation_contexts[self.current_conversation_id]["history"] = [DEFAULT_WELCOME_MESSAGE.copy()]
# Also clear current inputs if desired
return self._get_current_history(), gr.update(value=None), gr.update(value=None)
return [], gr.update(value=None), gr.update(value=None)
def build_ui(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<div>
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
<h1>Unified BAGEL Chat Interface</h1>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Conversations")
conversation_selector = gr.Radio(
label="Select Chat",
choices=[],
type="value"
)
new_chat_btn = gr.Button("➕ New Chat")
gr.Markdown("### Operation Mode")
mode_selector = gr.Radio(
label="Select Mode",
choices=["Text to Image", "Image Edit", "Image Understanding"],
value="Text to Image",
interactive=True
)
# --- Hyperparameter Accordions ---
# Visibility will be controlled by mode_selector
with gr.Accordion("Text to Image Settings", open=True, visible=True) as tti_accordion:
tti_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
tti_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
tti_image_ratio_dd = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", interactive=True)
tti_cfg_text_scale_slider = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
tti_cfg_interval_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval Start", interactive=True)
tti_cfg_renorm_type_dd = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", interactive=True)
tti_cfg_renorm_min_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
tti_num_timesteps_slider = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", interactive=True)
tti_timestep_shift_slider = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
with gr.Group(visible=False) as tti_thinking_params_group:
tti_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
tti_max_think_token_slider = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
tti_text_temp_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
tti_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[tti_show_thinking_cb], outputs=[tti_thinking_params_group])
with gr.Accordion("Image Edit Settings", open=False, visible=False) as edit_accordion:
edit_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
edit_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
edit_cfg_text_scale_slider = gr.Slider(1.0, 8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
edit_cfg_img_scale_slider = gr.Slider(1.0, 4.0, value=2.0, step=0.1, label="CFG Image Scale", interactive=True)
edit_cfg_interval_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Interval Start", interactive=True)
edit_cfg_renorm_type_dd = gr.Dropdown(["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", interactive=True)
edit_cfg_renorm_min_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
edit_num_timesteps_slider = gr.Slider(10, 100, value=50, step=5, label="Timesteps", interactive=True)
edit_timestep_shift_slider = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
with gr.Group(visible=False) as edit_thinking_params_group:
edit_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
edit_max_think_token_slider = gr.Slider(64, 4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
edit_text_temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
edit_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[edit_show_thinking_cb], outputs=[edit_thinking_params_group])
with gr.Accordion("Image Understanding Settings", open=False, visible=False) as und_accordion:
und_show_thinking_cb = gr.Checkbox(label="Show Thinking Process (if applicable)", value=False, interactive=True)
und_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
und_do_sample_cb = gr.Checkbox(label="Sampling", value=False, interactive=True)
und_text_temp_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature", interactive=True)
und_max_new_tokens_slider = gr.Slider(32, 2048, value=512, step=32, label="Max New Tokens", interactive=True)
# Logic to show/hide accordions based on mode
def update_accordion_visibility(mode):
return (
gr.update(visible=mode == "Text to Image"),
gr.update(visible=mode == "Image Edit"),
gr.update(visible=mode == "Image Understanding")
)
mode_selector.change(update_accordion_visibility, inputs=[mode_selector], outputs=[tti_accordion, edit_accordion, und_accordion])
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(label="BAGEL Chat", value=[DEFAULT_WELCOME_MESSAGE.copy()], bubble_full_width=False, height=600)
with gr.Row():
image_upload_ui = gr.Image(type="pil", label="Upload Image (for Edit/Understand)", sources=['upload'], visible=False, interactive=True)
with gr.Row():
text_input_ui = gr.Textbox(label="Enter your prompt here...", lines=3, scale=7, interactive=True)
submit_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear Chat", scale=1)
# Show/hide image upload based on mode
def update_image_upload_visibility(mode):
return gr.update(visible=mode in ["Image Edit", "Image Understanding"])
mode_selector.change(update_image_upload_visibility, inputs=[mode_selector], outputs=[image_upload_ui])
# Initial state setup
demo.load(lambda: self.new_chat_session("Welcome Chat"), outputs=[chatbot_ui, conversation_selector])
# Event handlers
new_chat_btn.click(
self.new_chat_session,
inputs=None,
outputs=[chatbot_ui, conversation_selector]
)
conversation_selector.change(
self.change_chat_session,
inputs=[conversation_selector],
outputs=[chatbot_ui]
)
submit_btn.click(
self.add_message,
inputs=[
text_input_ui, image_upload_ui, mode_selector,
# TTI
tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
# Edit
edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
# Understand
und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
],
outputs=[chatbot_ui, text_input_ui, image_upload_ui]
)
text_input_ui.submit(
self.add_message,
inputs=[
text_input_ui, image_upload_ui, mode_selector,
# TTI
tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
# Edit
edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
# Understand
und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
],
outputs=[chatbot_ui, text_input_ui, image_upload_ui]
)
clear_btn.click(self.clear_history, inputs=None, outputs=[chatbot_ui, text_input_ui, image_upload_ui])
return demo
# Main execution
if __name__ == "__main__":
app_instance = GradioApp()
demo_ui = app_instance.build_ui()
demo_ui.queue().launch(share=True, debug=True) # Set share=True if you need a public link |