Spaces:
Runtime error
Runtime error
| import dataclasses | |
| from enum import auto, Enum | |
| from typing import List, Tuple | |
| class SeparatorStyle(Enum): | |
| """Different separator style.""" | |
| SINGLE = auto() | |
| TWO = auto() | |
| MPT = auto() | |
| PLAIN = auto() | |
| LLAMA_2 = auto() | |
| class Conversation: | |
| """A class that keeps all conversation history.""" | |
| system: str | |
| roles: List[str] | |
| messages: List[List[str]] | |
| offset: int | |
| sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
| sep: str = "###" | |
| sep2: str = None | |
| version: str = "Unknown" | |
| skip_next: bool = False | |
| def get_prompt(self): | |
| messages = self.messages | |
| if len(messages) > 0 and type(messages[0][1]) is tuple: | |
| messages = self.messages.copy() | |
| init_role, init_msg = messages[0].copy() | |
| init_msg = init_msg[0].replace("<image>", "").strip() | |
| if 'mmtag' in self.version: | |
| messages[0] = (init_role, init_msg) | |
| messages.insert(0, (self.roles[0], "<Image><image></Image>")) | |
| messages.insert(1, (self.roles[1], "Received.")) | |
| else: | |
| messages[0] = (init_role, "<image>\n" + init_msg) | |
| if self.sep_style == SeparatorStyle.SINGLE: | |
| ret = self.system + self.sep | |
| for role, message in messages: | |
| if message: | |
| if type(message) is tuple: | |
| message, _, _ = message | |
| ret += role + ": " + message + self.sep | |
| else: | |
| ret += role + ":" | |
| elif self.sep_style == SeparatorStyle.TWO: | |
| seps = [self.sep, self.sep2] | |
| ret = self.system + seps[0] | |
| for i, (role, message) in enumerate(messages): | |
| if message: | |
| if type(message) is tuple: | |
| message, _, _ = message | |
| ret += role + ": " + message + seps[i % 2] | |
| else: | |
| ret += role + ":" | |
| elif self.sep_style == SeparatorStyle.PLAIN: | |
| seps = [self.sep, self.sep2] | |
| ret = self.system | |
| for i, (role, message) in enumerate(messages): | |
| if message: | |
| if type(message) is tuple: | |
| message, _, _ = message | |
| ret += message + seps[i % 2] | |
| else: | |
| ret += "" | |
| else: | |
| raise ValueError(f"Invalid style: {self.sep_style}") | |
| return ret | |
| def append_message(self, role, message): | |
| self.messages.append([role, message]) | |
| def get_images(self, return_pil=False): | |
| images = [] | |
| for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
| if i % 2 == 0: | |
| if type(msg) is tuple: | |
| import base64 | |
| from io import BytesIO | |
| from PIL import Image | |
| msg, image, image_process_mode = msg | |
| if image_process_mode == "Pad": | |
| def expand2square(pil_img, background_color=(122, 116, 104)): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| image = expand2square(image) | |
| elif image_process_mode in ["Default", "Crop"]: | |
| pass | |
| elif image_process_mode == "Resize": | |
| image = image.resize((336, 336)) | |
| else: | |
| raise ValueError(f"Invalid image_process_mode: {image_process_mode}") | |
| max_hw, min_hw = max(image.size), min(image.size) | |
| aspect_ratio = max_hw / min_hw | |
| max_len, min_len = 800, 400 | |
| shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
| longest_edge = int(shortest_edge * aspect_ratio) | |
| W, H = image.size | |
| if longest_edge != max(image.size): | |
| if H > W: | |
| H, W = longest_edge, shortest_edge | |
| else: | |
| H, W = shortest_edge, longest_edge | |
| image = image.resize((W, H)) | |
| if return_pil: | |
| images.append(image) | |
| else: | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
| images.append(img_b64_str) | |
| return images | |
| def to_gradio_chatbot(self): | |
| ret = [] | |
| for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
| if i % 2 == 0: | |
| if type(msg) is tuple: | |
| import base64 | |
| from io import BytesIO | |
| msg, image, image_process_mode = msg | |
| max_hw, min_hw = max(image.size), min(image.size) | |
| aspect_ratio = max_hw / min_hw | |
| max_len, min_len = 800, 400 | |
| shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
| longest_edge = int(shortest_edge * aspect_ratio) | |
| W, H = image.size | |
| if H > W: | |
| H, W = longest_edge, shortest_edge | |
| else: | |
| H, W = shortest_edge, longest_edge | |
| image = image.resize((W, H)) | |
| buffered = BytesIO() | |
| image.save(buffered, format="JPEG") | |
| img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
| img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
| msg = img_str + msg.replace('<image>', '').strip() | |
| ret.append([msg, None]) | |
| else: | |
| ret.append([msg, None]) | |
| else: | |
| ret[-1][-1] = msg | |
| return ret | |
| def copy(self): | |
| return Conversation( | |
| system=self.system, | |
| roles=self.roles, | |
| messages=[[x, y] for x, y in self.messages], | |
| offset=self.offset, | |
| sep_style=self.sep_style, | |
| sep=self.sep, | |
| sep2=self.sep2, | |
| version=self.version) | |
| def dict(self): | |
| if len(self.get_images()) > 0: | |
| return { | |
| "system": self.system, | |
| "roles": self.roles, | |
| "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], | |
| "offset": self.offset, | |
| "sep": self.sep, | |
| "sep2": self.sep2, | |
| } | |
| return { | |
| "system": self.system, | |
| "roles": self.roles, | |
| "messages": self.messages, | |
| "offset": self.offset, | |
| "sep": self.sep, | |
| "sep2": self.sep2, | |
| } | |
| conv_phi_v0 = Conversation( | |
| system="A chat between a curious user and an artificial intelligence assistant. " | |
| "The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
| roles=("USER", "ASSISTANT"), | |
| version="v0", | |
| messages=(), | |
| offset=0, | |
| sep_style=SeparatorStyle.TWO, | |
| sep=" ", | |
| sep2="<|endoftext|>", | |
| ) | |
| conv_llava_plain = Conversation( | |
| system="", | |
| roles=("", ""), | |
| messages=( | |
| ), | |
| offset=0, | |
| sep_style=SeparatorStyle.PLAIN, | |
| sep="\n", | |
| ) | |
| default_conversation = conv_phi_v0 | |
| conv_templates = { | |
| "default": conv_phi_v0, | |
| "v0": conv_phi_v0, | |
| "phi-2_v0": conv_phi_v0, | |
| "plain": conv_llava_plain, | |
| } | |
| if __name__ == "__main__": | |
| print(default_conversation.get_prompt()) | |