File size: 5,533 Bytes
efe75b3
 
 
 
 
 
 
fb4c1f6
efe75b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df4bed
3bc0094
9dad860
3bc0094
9dad860
 
 
3bc0094
 
 
 
 
9dad860
 
 
 
efe75b3
7cdcdab
efe75b3
 
 
 
 
 
 
7167e27
efe75b3
 
2722cbc
0d6943c
 
 
 
 
 
 
47e7f67
b8a7ca9
 
 
 
 
0d6943c
 
 
2722cbc
 
efe75b3
2722cbc
 
1cf7891
 
 
 
 
 
410fca0
2722cbc
 
 
 
 
1cf7891
2722cbc
78076cb
42a9d2b
78076cb
2722cbc
cbe6641
2722cbc
a85cefc
 
 
 
8cd024c
efe75b3
 
78076cb
 
efe75b3
 
 
78076cb
 
 
 
efe75b3
 
 
 
217a229
78076cb
efe75b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2

messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="GunaKoppula/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)


def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if text not in ["", None]:
        chatbot.append((text, None))
        textflag = True
    if image is not None:
        chatbot.append(((image,), None))
        imageflag = True
    if audio_mic is not None:
        chatbot.append(((audio_mic,), None))
        audioflag = True
    else:
        if audio_upload is not None:
            chatbot.append(((audio_upload,), None))
            audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot


def clear_data():
    return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)
    # outputs = ""

    history.append((None, outputs.title()))
    return history, None, None, None, None


with gr.Blocks() as demo:
    # gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch", align="center")
    
    with gr.Row() as title_row:
        # with gr.Column():
        #     # Create an empty column on the left for spacing
        #     pass
    
        with gr.Column():
            # Add Markdown with centered text
            gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch")
    
        # with gr.Column():
        #     # Create an empty column on the right for spacing
        #     pass
            
    gr.Markdown(
        """This is a multimodal implementation of [Phi2](https://huggingface.co/microsoft/phi-2) model. Please find the source code and training details [here](https://github.com/RaviNaik/ERA-CAPSTONE/MultiModalPhi2).
        
        ### Details:
        1. LLM Backbone: [Phi2](https://huggingface.co/microsoft/phi-2)
        2. Vision Tower: [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336)
        3. Audio Model: [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) 
        4. Pretraining Dataset: [LAION-CC-SBU dataset with BLIP captions(200k samples)](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
        5. Finetuning Dataset: [Instruct 150k dataset based on COCO](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K)
        6. Finetuned Model: [GunaKoppula/Llava-Phi2](https://huggingface.co/GunaKoppula/Llava-Phi2)
        """
    )

    # with gr.Row(scale=8):
    #     with gr.Box():
    #         with gr.Row():
    #             chatbot = gr.Chatbot(
    #                 avatar_images=("πŸ§‘", "πŸ€–"),
    #                 height=550,
    #             )

    with gr.Row():
        chatbot = gr.Chatbot(
            avatar_images=("πŸ§‘", "πŸ€–"),
            height=550,
        )
                
    with gr.Row():
        
        with gr.Column(scale=4):
            # Creating a column with a scale of 6
            with gr.Box():
                
                with gr.Column():
                    
                    with gr.Row():
                        # Adding a Textbox with a placeholder "write prompt"
                        prompt = gr.Textbox(
                            placeholder="Enter Prompt", lines=2, label="Query", value=None
                        )
                    # Creating a column with a scale of 2

                    with gr.Row():
                        # Adding image
                        image = gr.Image(type="filepath", value=None)
                    # Creating a column with a scale of 2
                    with gr.Row():
                        # Add audio
                        audio_upload = gr.Audio(source="upload", type="filepath")
                        audio_mic = gr.Audio(source="microphone", type="filepath", format="mp3")
                        # audio_upload = gr.Audio(source="upload", type="filepath", value=audio_mic)

                # with gr.Column():
                    # Adding a Button
                    with gr.Row():
                        submit = gr.Button()
                    with gr.Row():
                        clear = gr.Button(value="Clear")

    submit.click(
        add_content,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        # inputs=[chatbot, prompt, image, audio_upload],
        outputs=[chatbot],
    ).success(
        run,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        # inputs=[chatbot, prompt, image, audio_upload],
        outputs=[chatbot, prompt, image, audio_upload, audio_mic],
        # outputs=[chatbot, prompt, image, audio_upload],
    )

    clear.click(
        clear_data,
        # outputs=[prompt, image, audio_upload, audio_mic, chatbot],
        # outputs=[prompt, image, audio_upload, chatbot],
    )

demo.launch()