Spaces:
Sleeping
Sleeping
Update tasks/image.py
Browse files- tasks/image.py +166 -71
tasks/image.py
CHANGED
|
@@ -19,6 +19,13 @@ router = APIRouter()
|
|
| 19 |
DESCRIPTION = "YOLOv11"
|
| 20 |
ROUTE = "/image"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def parse_boxes(annotation_string):
|
| 23 |
"""Parse multiple boxes from a single annotation string.
|
| 24 |
Each box has 5 values: class_id, x_center, y_center, width, height"""
|
|
@@ -83,100 +90,75 @@ def get_boxes_list(predictions):
|
|
| 83 |
description=DESCRIPTION)
|
| 84 |
async def evaluate_image(request: ImageEvaluationRequest):
|
| 85 |
"""
|
| 86 |
-
Evaluate image classification and object detection for forest fire smoke.
|
| 87 |
-
|
| 88 |
-
Current Model: Random Baseline
|
| 89 |
-
- Makes random predictions for both classification and bounding boxes
|
| 90 |
-
- Used as a baseline for comparison
|
| 91 |
-
|
| 92 |
-
Metrics:
|
| 93 |
-
- Classification accuracy: Whether an image contains smoke or not
|
| 94 |
-
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
|
| 95 |
"""
|
| 96 |
-
# Get space info
|
| 97 |
-
username, space_url = get_space_info()
|
| 98 |
-
|
| 99 |
# Load and prepare the dataset
|
| 100 |
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
| 101 |
-
|
| 102 |
-
# Split dataset
|
| 103 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 104 |
test_dataset = train_test["test"]
|
| 105 |
-
|
| 106 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
tracker.start()
|
| 108 |
tracker.start_task("inference")
|
| 109 |
-
|
| 110 |
-
#--------------------------------------------------------------------------------------------
|
| 111 |
-
# YOUR MODEL INFERENCE CODE HERE
|
| 112 |
-
# Update the code below to replace the random baseline with your model inference
|
| 113 |
-
#--------------------------------------------------------------------------------------------
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
PATH_TO_MODEL = f"best.pt"
|
| 117 |
-
model = load_model(PATH_TO_MODEL)
|
| 118 |
-
|
| 119 |
-
print(f"Model info: {model.info()}")
|
| 120 |
-
predictions = []
|
| 121 |
true_labels = []
|
|
|
|
| 122 |
pred_boxes = []
|
| 123 |
-
true_boxes_list = []
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
# Parse true
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# Parse all true boxes from the annotation
|
| 141 |
-
image_true_boxes = parse_boxes(annotation)
|
| 142 |
-
true_boxes_list.append(image_true_boxes)
|
| 143 |
-
|
| 144 |
-
try:
|
| 145 |
-
pred_box_list = get_boxes_list(model_preds)[0] # With one bbox to start with (as in the random baseline)
|
| 146 |
-
except:
|
| 147 |
-
print("No boxes found")
|
| 148 |
-
pred_box_list = [0, 0, 0, 0] # Hacky way to make sure that compute_max_iou doesn't fail
|
| 149 |
-
pred_boxes.append(pred_box_list)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
#--------------------------------------------------------------------------------------------
|
| 154 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
| 155 |
-
#--------------------------------------------------------------------------------------------
|
| 156 |
-
|
| 157 |
# Stop tracking emissions
|
| 158 |
emissions_data = tracker.stop_task()
|
| 159 |
-
|
| 160 |
# Calculate classification metrics
|
| 161 |
classification_accuracy = accuracy_score(true_labels, predictions)
|
| 162 |
classification_precision = precision_score(true_labels, predictions)
|
| 163 |
classification_recall = recall_score(true_labels, predictions)
|
| 164 |
-
|
| 165 |
# Calculate mean IoU for object detection (only for images with smoke)
|
| 166 |
-
|
| 167 |
-
ious = []
|
| 168 |
-
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
|
| 169 |
-
max_iou = compute_max_iou(true_boxes, pred_box)
|
| 170 |
-
ious.append(max_iou)
|
| 171 |
-
|
| 172 |
mean_iou = float(np.mean(ious)) if ious else 0.0
|
| 173 |
-
|
| 174 |
# Prepare results dictionary
|
|
|
|
| 175 |
results = {
|
| 176 |
"username": username,
|
| 177 |
"space_url": space_url,
|
| 178 |
"submission_timestamp": datetime.now().isoformat(),
|
| 179 |
-
"model_description":
|
| 180 |
"classification_accuracy": float(classification_accuracy),
|
| 181 |
"classification_precision": float(classification_precision),
|
| 182 |
"classification_recall": float(classification_recall),
|
|
@@ -184,12 +166,125 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 184 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 185 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 186 |
"emissions_data": clean_emissions_data(emissions_data),
|
| 187 |
-
"api_route":
|
| 188 |
"dataset_config": {
|
| 189 |
"dataset_name": request.dataset_name,
|
| 190 |
"test_size": request.test_size,
|
| 191 |
"test_seed": request.test_seed
|
| 192 |
}
|
| 193 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
|
|
|
|
| 19 |
DESCRIPTION = "YOLOv11"
|
| 20 |
ROUTE = "/image"
|
| 21 |
|
| 22 |
+
def collate_fn(batch):
|
| 23 |
+
"""Prepare a batch of examples."""
|
| 24 |
+
images = [example["image"] for example in batch]
|
| 25 |
+
annotations = [example["annotations"].strip() for example in batch]
|
| 26 |
+
return images, annotations
|
| 27 |
+
|
| 28 |
+
|
| 29 |
def parse_boxes(annotation_string):
|
| 30 |
"""Parse multiple boxes from a single annotation string.
|
| 31 |
Each box has 5 values: class_id, x_center, y_center, width, height"""
|
|
|
|
| 90 |
description=DESCRIPTION)
|
| 91 |
async def evaluate_image(request: ImageEvaluationRequest):
|
| 92 |
"""
|
| 93 |
+
Evaluate image classification and object detection for forest fire smoke using batched inference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
"""
|
|
|
|
|
|
|
|
|
|
| 95 |
# Load and prepare the dataset
|
| 96 |
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
|
|
|
|
|
|
| 97 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 98 |
test_dataset = train_test["test"]
|
| 99 |
+
|
| 100 |
+
# Load YOLO model
|
| 101 |
+
model_path = "best.pt"
|
| 102 |
+
model = YOLO(model_path)
|
| 103 |
+
model.eval()
|
| 104 |
+
|
| 105 |
+
# Set up DataLoader for batched processing
|
| 106 |
+
batch_size = 8
|
| 107 |
+
dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
|
| 108 |
+
|
| 109 |
+
# Initialize variables for evaluation
|
| 110 |
tracker.start()
|
| 111 |
tracker.start_task("inference")
|
| 112 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
true_labels = []
|
| 114 |
+
predictions = []
|
| 115 |
pred_boxes = []
|
| 116 |
+
true_boxes_list = []
|
| 117 |
+
|
| 118 |
+
for batch_idx, (images, annotations) in enumerate(dataloader):
|
| 119 |
+
print(f"Processing batch {batch_idx + 1}")
|
| 120 |
+
|
| 121 |
+
# Parse true labels and boxes
|
| 122 |
+
batch_true_labels = []
|
| 123 |
+
batch_true_boxes_list = []
|
| 124 |
+
for annotation in annotations:
|
| 125 |
+
has_smoke = len(annotation) > 0
|
| 126 |
+
batch_true_labels.append(int(has_smoke))
|
| 127 |
+
true_boxes = parse_boxes(annotation) if has_smoke else []
|
| 128 |
+
batch_true_boxes_list.append(true_boxes)
|
| 129 |
|
| 130 |
+
true_labels.extend(batch_true_labels)
|
| 131 |
+
true_boxes_list.extend(batch_true_boxes_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
# YOLO batch inference
|
| 134 |
+
batch_predictions = model(images)
|
| 135 |
+
|
| 136 |
+
# Parse predictions for smoke detection and bounding boxes
|
| 137 |
+
batch_predictions_classes = [1 if len(pred.boxes) > 0 else 0 for pred in batch_predictions]
|
| 138 |
+
batch_pred_boxes = [get_boxes_list(pred)[0] if len(pred.boxes) > 0 else [0, 0, 0, 0] for pred in batch_predictions]
|
| 139 |
+
|
| 140 |
+
predictions.extend(batch_predictions_classes)
|
| 141 |
+
pred_boxes.extend(batch_pred_boxes)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# Stop tracking emissions
|
| 144 |
emissions_data = tracker.stop_task()
|
| 145 |
+
|
| 146 |
# Calculate classification metrics
|
| 147 |
classification_accuracy = accuracy_score(true_labels, predictions)
|
| 148 |
classification_precision = precision_score(true_labels, predictions)
|
| 149 |
classification_recall = recall_score(true_labels, predictions)
|
| 150 |
+
|
| 151 |
# Calculate mean IoU for object detection (only for images with smoke)
|
| 152 |
+
ious = [compute_max_iou(true_boxes, pred_box) for true_boxes, pred_box in zip(true_boxes_list, pred_boxes)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
mean_iou = float(np.mean(ious)) if ious else 0.0
|
| 154 |
+
|
| 155 |
# Prepare results dictionary
|
| 156 |
+
username, space_url = get_space_info()
|
| 157 |
results = {
|
| 158 |
"username": username,
|
| 159 |
"space_url": space_url,
|
| 160 |
"submission_timestamp": datetime.now().isoformat(),
|
| 161 |
+
"model_description": "YOLOv11",
|
| 162 |
"classification_accuracy": float(classification_accuracy),
|
| 163 |
"classification_precision": float(classification_precision),
|
| 164 |
"classification_recall": float(classification_recall),
|
|
|
|
| 166 |
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 167 |
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 168 |
"emissions_data": clean_emissions_data(emissions_data),
|
| 169 |
+
"api_route": "/image",
|
| 170 |
"dataset_config": {
|
| 171 |
"dataset_name": request.dataset_name,
|
| 172 |
"test_size": request.test_size,
|
| 173 |
"test_seed": request.test_seed
|
| 174 |
}
|
| 175 |
}
|
| 176 |
+
|
| 177 |
+
return results
|
| 178 |
+
|
| 179 |
+
# async def evaluate_image(request: ImageEvaluationRequest):
|
| 180 |
+
# """
|
| 181 |
+
# Evaluate image classification and object detection for forest fire smoke.
|
| 182 |
+
|
| 183 |
+
# Current Model: Random Baseline
|
| 184 |
+
# - Makes random predictions for both classification and bounding boxes
|
| 185 |
+
# - Used as a baseline for comparison
|
| 186 |
+
|
| 187 |
+
# Metrics:
|
| 188 |
+
# - Classification accuracy: Whether an image contains smoke or not
|
| 189 |
+
# - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
|
| 190 |
+
# """
|
| 191 |
+
# # Get space info
|
| 192 |
+
# username, space_url = get_space_info()
|
| 193 |
+
|
| 194 |
+
# # Load and prepare the dataset
|
| 195 |
+
# dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
| 196 |
+
|
| 197 |
+
# # Split dataset
|
| 198 |
+
# train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 199 |
+
# test_dataset = train_test["test"]
|
| 200 |
+
|
| 201 |
+
# # Start tracking emissions
|
| 202 |
+
# tracker.start()
|
| 203 |
+
# tracker.start_task("inference")
|
| 204 |
+
|
| 205 |
+
# #--------------------------------------------------------------------------------------------
|
| 206 |
+
# # YOUR MODEL INFERENCE CODE HERE
|
| 207 |
+
# # Update the code below to replace the random baseline with your model inference
|
| 208 |
+
# #--------------------------------------------------------------------------------------------
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# PATH_TO_MODEL = f"best.pt"
|
| 212 |
+
# model = load_model(PATH_TO_MODEL)
|
| 213 |
+
|
| 214 |
+
# print(f"Model info: {model.info()}")
|
| 215 |
+
# predictions = []
|
| 216 |
+
# true_labels = []
|
| 217 |
+
# pred_boxes = []
|
| 218 |
+
# true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
| 219 |
+
|
| 220 |
+
# n_examples = len(test_dataset)
|
| 221 |
+
# for i, example in enumerate(test_dataset):
|
| 222 |
+
# print(f"Running {i+1} of {n_examples}")
|
| 223 |
+
# # Parse true annotation (YOLO format: class_id x_center y_center width height)
|
| 224 |
+
# annotation = example.get("annotations", "").strip()
|
| 225 |
+
# has_smoke = len(annotation) > 0
|
| 226 |
+
# true_labels.append(int(has_smoke))
|
| 227 |
+
|
| 228 |
+
# model_preds = model(example['image'])[0]
|
| 229 |
+
# pred_has_smoke = len(model_preds) > 0
|
| 230 |
+
# predictions.append(int(pred_has_smoke))
|
| 231 |
+
|
| 232 |
+
# # If there's a true box, parse it and make random box prediction
|
| 233 |
+
# if has_smoke:
|
| 234 |
+
|
| 235 |
+
# # Parse all true boxes from the annotation
|
| 236 |
+
# image_true_boxes = parse_boxes(annotation)
|
| 237 |
+
# true_boxes_list.append(image_true_boxes)
|
| 238 |
+
|
| 239 |
+
# try:
|
| 240 |
+
# pred_box_list = get_boxes_list(model_preds)[0] # With one bbox to start with (as in the random baseline)
|
| 241 |
+
# except:
|
| 242 |
+
# print("No boxes found")
|
| 243 |
+
# pred_box_list = [0, 0, 0, 0] # Hacky way to make sure that compute_max_iou doesn't fail
|
| 244 |
+
# pred_boxes.append(pred_box_list)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# #--------------------------------------------------------------------------------------------
|
| 249 |
+
# # YOUR MODEL INFERENCE STOPS HERE
|
| 250 |
+
# #--------------------------------------------------------------------------------------------
|
| 251 |
+
|
| 252 |
+
# # Stop tracking emissions
|
| 253 |
+
# emissions_data = tracker.stop_task()
|
| 254 |
+
|
| 255 |
+
# # Calculate classification metrics
|
| 256 |
+
# classification_accuracy = accuracy_score(true_labels, predictions)
|
| 257 |
+
# classification_precision = precision_score(true_labels, predictions)
|
| 258 |
+
# classification_recall = recall_score(true_labels, predictions)
|
| 259 |
+
|
| 260 |
+
# # Calculate mean IoU for object detection (only for images with smoke)
|
| 261 |
+
# # For each image, we compute the max IoU between the predicted box and all true boxes
|
| 262 |
+
# ious = []
|
| 263 |
+
# for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
|
| 264 |
+
# max_iou = compute_max_iou(true_boxes, pred_box)
|
| 265 |
+
# ious.append(max_iou)
|
| 266 |
+
|
| 267 |
+
# mean_iou = float(np.mean(ious)) if ious else 0.0
|
| 268 |
+
|
| 269 |
+
# # Prepare results dictionary
|
| 270 |
+
# results = {
|
| 271 |
+
# "username": username,
|
| 272 |
+
# "space_url": space_url,
|
| 273 |
+
# "submission_timestamp": datetime.now().isoformat(),
|
| 274 |
+
# "model_description": DESCRIPTION,
|
| 275 |
+
# "classification_accuracy": float(classification_accuracy),
|
| 276 |
+
# "classification_precision": float(classification_precision),
|
| 277 |
+
# "classification_recall": float(classification_recall),
|
| 278 |
+
# "mean_iou": mean_iou,
|
| 279 |
+
# "energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 280 |
+
# "emissions_gco2eq": emissions_data.emissions * 1000,
|
| 281 |
+
# "emissions_data": clean_emissions_data(emissions_data),
|
| 282 |
+
# "api_route": ROUTE,
|
| 283 |
+
# "dataset_config": {
|
| 284 |
+
# "dataset_name": request.dataset_name,
|
| 285 |
+
# "test_size": request.test_size,
|
| 286 |
+
# "test_seed": request.test_seed
|
| 287 |
+
# }
|
| 288 |
+
# }
|
| 289 |
|
| 290 |
+
# return results
|