Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Load the Llama 3.2 model and tokenizer
|
| 6 |
+
model_name = "your-llama-3-2-model" # Replace with the correct model path in Hugging Face Hub
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
def search_api_call(query: str):
|
| 11 |
+
api_key = '614e992d87c496fb15a81a2039e00e6a42530f5c' # Replace with your actual API key
|
| 12 |
+
url = f"https://api.serper.dev/search?api_key={api_key}&q={query}"
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
response = requests.get(url)
|
| 16 |
+
data = response.json()
|
| 17 |
+
return data['organic_results'] # Adjust according to the API response structure
|
| 18 |
+
except Exception as e:
|
| 19 |
+
st.error("Error fetching from the API: " + str(e))
|
| 20 |
+
return None
|
| 21 |
+
|
| 22 |
+
def is_llm_insufficient(llm_response: str) -> bool:
|
| 23 |
+
return "I don't know" in llm_response or llm_response.strip() == ''
|
| 24 |
+
|
| 25 |
+
def summarize_search_results(results):
|
| 26 |
+
summary = ""
|
| 27 |
+
for result in results:
|
| 28 |
+
summary += f"- {result['title']} ({result['link']})\n"
|
| 29 |
+
return summary
|
| 30 |
+
|
| 31 |
+
def generate_llm_response(user_query: str) -> str:
|
| 32 |
+
inputs = tokenizer(user_query, return_tensors="pt")
|
| 33 |
+
outputs = model.generate(**inputs, max_length=150)
|
| 34 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
|
| 36 |
+
# Streamlit user interface
|
| 37 |
+
st.title("Real-Time Factual Information Fetcher")
|
| 38 |
+
user_query = st.text_input("Enter your query:")
|
| 39 |
+
|
| 40 |
+
if st.button("Submit"):
|
| 41 |
+
if user_query:
|
| 42 |
+
llm_response = generate_llm_response(user_query)
|
| 43 |
+
|
| 44 |
+
if is_llm_insufficient(llm_response) or 'recent' in user_query.lower():
|
| 45 |
+
search_results = search_api_call(user_query)
|
| 46 |
+
if search_results:
|
| 47 |
+
search_summary = summarize_search_results(search_results)
|
| 48 |
+
combined_response = f"{llm_response}\n\nHere are some recent findings:\n{search_summary.strip()}"
|
| 49 |
+
else:
|
| 50 |
+
combined_response = llm_response # Fallback to the original LLM response
|
| 51 |
+
else:
|
| 52 |
+
combined_response = llm_response
|
| 53 |
+
|
| 54 |
+
st.markdown("### Response:")
|
| 55 |
+
st.markdown(combined_response)
|
| 56 |
+
|
| 57 |
+
else:
|
| 58 |
+
st.warning("Please enter a query.")
|
| 59 |
+
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
import streamlit as st
|