File size: 8,485 Bytes
1b85d75
 
 
 
 
 
 
 
246389f
1b85d75
246389f
1b85d75
 
 
8c44f73
 
1b85d75
 
 
 
7643365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b85d75
 
 
 
 
 
 
 
 
 
 
 
246389f
1b85d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246389f
 
 
1b85d75
246389f
 
 
1b85d75
246389f
 
1b85d75
 
246389f
1b85d75
246389f
1b85d75
246389f
1b85d75
246389f
1b85d75
246389f
 
1b85d75
 
 
 
 
 
 
7643365
c041d7c
7643365
 
246389f
 
1b85d75
 
246389f
1b85d75
246389f
1b85d75
 
dad2fe1
246389f
dad2fe1
e4c073a
246389f
 
1b85d75
 
246389f
1b85d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import re
import gradio as gr
from PIL import Image, ImageDraw
import math
import torch
import html
from transformers import DonutProcessor, VisionEncoderDecoderModel

pretrained_repo_name = 'ivelin/donut-refexp-click'
pretrained_revision = 'main'
# revision can be git commit hash, branch or tag
# use 'main' for latest revision
print(f"Loading model checkpoint: {pretrained_repo_name}")

processor = DonutProcessor.from_pretrained(pretrained_repo_name, revision=pretrained_revision, use_auth_token="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")
model = VisionEncoderDecoderModel.from_pretrained(pretrained_repo_name, use_auth_token="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", revision=pretrained_revision)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def translate_point_coords_from_out_to_in(point=None, input_image_size=None, output_image_size=None):
    """
    Convert relative prediction coordinates from resized encoder tensor image
    to original input image size.
    Args:
        original_point: x, y coordinates of the point coordinates in [0..1] range in the original image 
        input_image_size: (width, height) tuple
        output_image_size: (width, height) tuple
    """    
    assert point is not None
    assert input_image_size is not None
    assert output_image_size is not None
    # print(f"point={point}, input_image_size={input_image_size}, output_image_size={output_image_size}")
    input_width, input_height = input_image_size
    output_width, output_height = output_image_size
    
    ratio = min(output_width/input_width, output_height/input_height)
    
    resized_height = int(input_height*ratio)
    # print(f'>>> resized_height={resized_height}')
    resized_width = int(input_width*ratio)
    # print(f'>>> resized_width={resized_width}')

    if resized_height == input_height and resized_width == input_width:
        return

    # translation of the relative positioning is only needed for dimentions that have padding
    if resized_width < output_width:
        # adjust for padding pixels
        point['x'] *= (output_width / resized_width)
    if resized_height < output_height:
        # adjust for padding pixels
        point['y'] *= (output_height / resized_height)
    # print(f"translated point={point}, resized_image_size: {resized_width, resized_height}")
        

def process_refexp(image: Image, prompt: str):

    print(f"(image, prompt): {image}, {prompt}")

    # trim prompt to 80 characters and normalize to lowercase
    prompt = prompt[:80].lower()

    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values

    # prepare decoder inputs
    task_prompt = "<s_refexp><s_prompt>{user_input}</s_prompt><s_target_center>"
    prompt = task_prompt.replace("{user_input}", prompt)
    decoder_input_ids = processor.tokenizer(
        prompt, add_special_tokens=False, return_tensors="pt").input_ids

    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    print(fr"predicted decoder sequence: {html.escape(sequence)}")
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
        processor.tokenizer.pad_token, "")
    # remove first task start token
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
    print(
        fr"predicted decoder sequence before token2json: {html.escape(sequence)}")
    seqjson = processor.token2json(sequence)

    # safeguard in case predicted sequence does not include a target_center token
    center_point = seqjson.get('target_center')
    if center_point is None:
        print(
            f"predicted sequence has no target_center, seq:{sequence}")
        center_point = {"x": 0, "y": 0}
        return center_point

    print(f"predicted center_point with text coordinates: {center_point}")
    # safeguard in case text prediction is missing some center point coordinates
    # or coordinates are not valid numeric values
    try:
        x = float(center_point.get("x", 0))
    except ValueError:
        x = 0
    try:
        y = float(center_point.get("y", 0))
    except ValueError:
        y = 0
    # replace str with float coords
    center_point = {"x": x, "y": y, "decoder output sequence": sequence}
    print(f"predicted center_point with float coordinates: {center_point}")

    print(f"image object: {image}")
    print(f"image size: {image.size}")
    width, height = image.size
    print(f"image width, height: {width, height}")
    print(f"processed prompt: {prompt}")

    # convert coordinates from tensor image size to input image size
    out_size = (processor.image_processor.size[1], processor.image_processor.size[0])
    translate_point_coords_from_out_to_in(point=center_point, input_image_size=image.size, output_image_size=out_size)
    
    x = math.floor(width*center_point["x"])
    y = math.floor(height*center_point["y"])

    print(
        f"to image pixel values: x, y: {x, y}")

    # draw center point circle
    img1 = ImageDraw.Draw(image)

    r = 30
    shape = [(x-r, y-r), (x+r, y+r)]
    img1.ellipse(shape, outline="green", width=20)
    img1.ellipse(shape, outline="white", width=10)

    return image, center_point


title = "Demo: Donut 🍩 for UI RefExp - Center Point (by GuardianUI)"
description = "Gradio Demo for Donut RefExp task, an instance of `VisionEncoderDecoderModel` fine-tuned on [UIBert RefExp](https://huggingface.co/datasets/ivelin/ui_refexp_saved) Dataset (UI Referring Expression). To use it, simply upload your image and type a prompt and click 'submit', or click one of the examples to load them. See the model training <a href='https://colab.research.google.com/github/ivelin/donut_ui_refexp/blob/main/Fine_tune_Donut_on_UI_RefExp.ipynb' target='_parent'>Colab Notebook</a> for this space. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
examples = [["example_1.jpg", "select the setting icon from top right corner"],
            ["example_1.jpg", "click on down arrow beside the entertainment"],
            ["example_1.jpg", "select the down arrow button beside lifestyle"],
            ["example_1.jpg", "click on the image beside the option traffic"],
            ["example_3.jpg", "select the third row first image"],
            ["example_3.jpg", "click the tick mark on the first image"],
            ["example_3.jpg", "select the ninth image"],
            ["example_3.jpg", "select the add icon"],
            ["example_3.jpg", "click the first image"],
            ["val-image-4.jpg", 'select 4153365454'],
            ['val-image-4.jpg', 'go to cell'],
            ['val-image-4.jpg', 'select number above cell'],
            ["val-image-1.jpg", "select calendar option"],
            ["val-image-1.jpg", "select photos&videos option"],
            ["val-image-2.jpg", "click on change store"],
            ["val-image-2.jpg", "click on shop menu at the bottom"],
            ["val-image-3.jpg", "click on image above short meow"],
            ["val-image-3.jpg", "go to cat sounds"],
            ["example_2.jpg", "click on green color button"],
            ["example_2.jpg", "click on text which is beside call now"],
            ["example_2.jpg", "click on more button"],
            ["example_2.jpg", "enter the text field next to the name"],
            ]

demo = gr.Interface(fn=process_refexp,
                    inputs=[gr.Image(type="pil"), "text"],
                    outputs=[gr.Image(type="pil"), "json"],
                    title=title,
                    description=description,
                    article=article,
                    examples=examples,
                    # caching examples inference takes too long to start space after app change commit
                    cache_examples=False
                    )

demo.launch()