Katock commited on
Commit
3d4653f
·
1 Parent(s): 16c3ddb
diffusion/__init__.py ADDED
File without changes
diffusion/data_loaders.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import re
4
+ import numpy as np
5
+ import librosa
6
+ import torch
7
+ import random
8
+ from utils import repeat_expand_2d
9
+ from tqdm import tqdm
10
+ from torch.utils.data import Dataset
11
+
12
+ def traverse_dir(
13
+ root_dir,
14
+ extensions,
15
+ amount=None,
16
+ str_include=None,
17
+ str_exclude=None,
18
+ is_pure=False,
19
+ is_sort=False,
20
+ is_ext=True):
21
+
22
+ file_list = []
23
+ cnt = 0
24
+ for root, _, files in os.walk(root_dir):
25
+ for file in files:
26
+ if any([file.endswith(f".{ext}") for ext in extensions]):
27
+ # path
28
+ mix_path = os.path.join(root, file)
29
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
30
+
31
+ # amount
32
+ if (amount is not None) and (cnt == amount):
33
+ if is_sort:
34
+ file_list.sort()
35
+ return file_list
36
+
37
+ # check string
38
+ if (str_include is not None) and (str_include not in pure_path):
39
+ continue
40
+ if (str_exclude is not None) and (str_exclude in pure_path):
41
+ continue
42
+
43
+ if not is_ext:
44
+ ext = pure_path.split('.')[-1]
45
+ pure_path = pure_path[:-(len(ext)+1)]
46
+ file_list.append(pure_path)
47
+ cnt += 1
48
+ if is_sort:
49
+ file_list.sort()
50
+ return file_list
51
+
52
+
53
+ def get_data_loaders(args, whole_audio=False):
54
+ data_train = AudioDataset(
55
+ filelists = args.data.training_files,
56
+ waveform_sec=args.data.duration,
57
+ hop_size=args.data.block_size,
58
+ sample_rate=args.data.sampling_rate,
59
+ load_all_data=args.train.cache_all_data,
60
+ whole_audio=whole_audio,
61
+ extensions=args.data.extensions,
62
+ n_spk=args.model.n_spk,
63
+ spk=args.spk,
64
+ device=args.train.cache_device,
65
+ fp16=args.train.cache_fp16,
66
+ use_aug=True)
67
+ loader_train = torch.utils.data.DataLoader(
68
+ data_train ,
69
+ batch_size=args.train.batch_size if not whole_audio else 1,
70
+ shuffle=True,
71
+ num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
72
+ persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
73
+ pin_memory=True if args.train.cache_device=='cpu' else False
74
+ )
75
+ data_valid = AudioDataset(
76
+ filelists = args.data.validation_files,
77
+ waveform_sec=args.data.duration,
78
+ hop_size=args.data.block_size,
79
+ sample_rate=args.data.sampling_rate,
80
+ load_all_data=args.train.cache_all_data,
81
+ whole_audio=True,
82
+ spk=args.spk,
83
+ extensions=args.data.extensions,
84
+ n_spk=args.model.n_spk)
85
+ loader_valid = torch.utils.data.DataLoader(
86
+ data_valid,
87
+ batch_size=1,
88
+ shuffle=False,
89
+ num_workers=0,
90
+ pin_memory=True
91
+ )
92
+ return loader_train, loader_valid
93
+
94
+
95
+ class AudioDataset(Dataset):
96
+ def __init__(
97
+ self,
98
+ filelists,
99
+ waveform_sec,
100
+ hop_size,
101
+ sample_rate,
102
+ spk,
103
+ load_all_data=True,
104
+ whole_audio=False,
105
+ extensions=['wav'],
106
+ n_spk=1,
107
+ device='cpu',
108
+ fp16=False,
109
+ use_aug=False,
110
+ ):
111
+ super().__init__()
112
+
113
+ self.waveform_sec = waveform_sec
114
+ self.sample_rate = sample_rate
115
+ self.hop_size = hop_size
116
+ self.filelists = filelists
117
+ self.whole_audio = whole_audio
118
+ self.use_aug = use_aug
119
+ self.data_buffer={}
120
+ self.pitch_aug_dict = {}
121
+ # np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
122
+ if load_all_data:
123
+ print('Load all the data filelists:', filelists)
124
+ else:
125
+ print('Load the f0, volume data filelists:', filelists)
126
+ with open(filelists,"r") as f:
127
+ self.paths = f.read().splitlines()
128
+ for name_ext in tqdm(self.paths, total=len(self.paths)):
129
+ name = os.path.splitext(name_ext)[0]
130
+ path_audio = name_ext
131
+ duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
132
+
133
+ path_f0 = name_ext + ".f0.npy"
134
+ f0,_ = np.load(path_f0,allow_pickle=True)
135
+ f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
136
+
137
+ path_volume = name_ext + ".vol.npy"
138
+ volume = np.load(path_volume)
139
+ volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
140
+
141
+ path_augvol = name_ext + ".aug_vol.npy"
142
+ aug_vol = np.load(path_augvol)
143
+ aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
144
+
145
+ if n_spk is not None and n_spk > 1:
146
+ spk_name = name_ext.split("/")[-2]
147
+ spk_id = spk[spk_name] if spk_name in spk else 0
148
+ if spk_id < 0 or spk_id >= n_spk:
149
+ raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
150
+ else:
151
+ spk_id = 0
152
+ spk_id = torch.LongTensor(np.array([spk_id])).to(device)
153
+
154
+ if load_all_data:
155
+ '''
156
+ audio, sr = librosa.load(path_audio, sr=self.sample_rate)
157
+ if len(audio.shape) > 1:
158
+ audio = librosa.to_mono(audio)
159
+ audio = torch.from_numpy(audio).to(device)
160
+ '''
161
+ path_mel = name_ext + ".mel.npy"
162
+ mel = np.load(path_mel)
163
+ mel = torch.from_numpy(mel).to(device)
164
+
165
+ path_augmel = name_ext + ".aug_mel.npy"
166
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
167
+ aug_mel = np.array(aug_mel,dtype=float)
168
+ aug_mel = torch.from_numpy(aug_mel).to(device)
169
+ self.pitch_aug_dict[name_ext] = keyshift
170
+
171
+ path_units = name_ext + ".soft.pt"
172
+ units = torch.load(path_units).to(device)
173
+ units = units[0]
174
+ units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
175
+
176
+ if fp16:
177
+ mel = mel.half()
178
+ aug_mel = aug_mel.half()
179
+ units = units.half()
180
+
181
+ self.data_buffer[name_ext] = {
182
+ 'duration': duration,
183
+ 'mel': mel,
184
+ 'aug_mel': aug_mel,
185
+ 'units': units,
186
+ 'f0': f0,
187
+ 'volume': volume,
188
+ 'aug_vol': aug_vol,
189
+ 'spk_id': spk_id
190
+ }
191
+ else:
192
+ path_augmel = name_ext + ".aug_mel.npy"
193
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
194
+ self.pitch_aug_dict[name_ext] = keyshift
195
+ self.data_buffer[name_ext] = {
196
+ 'duration': duration,
197
+ 'f0': f0,
198
+ 'volume': volume,
199
+ 'aug_vol': aug_vol,
200
+ 'spk_id': spk_id
201
+ }
202
+
203
+
204
+ def __getitem__(self, file_idx):
205
+ name_ext = self.paths[file_idx]
206
+ data_buffer = self.data_buffer[name_ext]
207
+ # check duration. if too short, then skip
208
+ if data_buffer['duration'] < (self.waveform_sec + 0.1):
209
+ return self.__getitem__( (file_idx + 1) % len(self.paths))
210
+
211
+ # get item
212
+ return self.get_data(name_ext, data_buffer)
213
+
214
+ def get_data(self, name_ext, data_buffer):
215
+ name = os.path.splitext(name_ext)[0]
216
+ frame_resolution = self.hop_size / self.sample_rate
217
+ duration = data_buffer['duration']
218
+ waveform_sec = duration if self.whole_audio else self.waveform_sec
219
+
220
+ # load audio
221
+ idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
222
+ start_frame = int(idx_from / frame_resolution)
223
+ units_frame_len = int(waveform_sec / frame_resolution)
224
+ aug_flag = random.choice([True, False]) and self.use_aug
225
+ '''
226
+ audio = data_buffer.get('audio')
227
+ if audio is None:
228
+ path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
229
+ audio, sr = librosa.load(
230
+ path_audio,
231
+ sr = self.sample_rate,
232
+ offset = start_frame * frame_resolution,
233
+ duration = waveform_sec)
234
+ if len(audio.shape) > 1:
235
+ audio = librosa.to_mono(audio)
236
+ # clip audio into N seconds
237
+ audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
238
+ audio = torch.from_numpy(audio).float()
239
+ else:
240
+ audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
241
+ '''
242
+ # load mel
243
+ mel_key = 'aug_mel' if aug_flag else 'mel'
244
+ mel = data_buffer.get(mel_key)
245
+ if mel is None:
246
+ mel = name_ext + ".mel.npy"
247
+ mel = np.load(mel)
248
+ mel = mel[start_frame : start_frame + units_frame_len]
249
+ mel = torch.from_numpy(mel).float()
250
+ else:
251
+ mel = mel[start_frame : start_frame + units_frame_len]
252
+
253
+ # load f0
254
+ f0 = data_buffer.get('f0')
255
+ aug_shift = 0
256
+ if aug_flag:
257
+ aug_shift = self.pitch_aug_dict[name_ext]
258
+ f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
259
+
260
+ # load units
261
+ units = data_buffer.get('units')
262
+ if units is None:
263
+ path_units = name_ext + ".soft.pt"
264
+ units = torch.load(path_units)
265
+ units = units[0]
266
+ units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
267
+
268
+ units = units[start_frame : start_frame + units_frame_len]
269
+
270
+ # load volume
271
+ vol_key = 'aug_vol' if aug_flag else 'volume'
272
+ volume = data_buffer.get(vol_key)
273
+ volume_frames = volume[start_frame : start_frame + units_frame_len]
274
+
275
+ # load spk_id
276
+ spk_id = data_buffer.get('spk_id')
277
+
278
+ # load shift
279
+ aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
280
+
281
+ return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
282
+
283
+ def __len__(self):
284
+ return len(self.paths)
diffusion/diffusion.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from functools import partial
3
+ from inspect import isfunction
4
+ import torch.nn.functional as F
5
+ import librosa.sequence
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ from tqdm import tqdm
10
+
11
+
12
+ def exists(x):
13
+ return x is not None
14
+
15
+
16
+ def default(val, d):
17
+ if exists(val):
18
+ return val
19
+ return d() if isfunction(d) else d
20
+
21
+
22
+ def extract(a, t, x_shape):
23
+ b, *_ = t.shape
24
+ out = a.gather(-1, t)
25
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
26
+
27
+
28
+ def noise_like(shape, device, repeat=False):
29
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
30
+ noise = lambda: torch.randn(shape, device=device)
31
+ return repeat_noise() if repeat else noise()
32
+
33
+
34
+ def linear_beta_schedule(timesteps, max_beta=0.02):
35
+ """
36
+ linear schedule
37
+ """
38
+ betas = np.linspace(1e-4, max_beta, timesteps)
39
+ return betas
40
+
41
+
42
+ def cosine_beta_schedule(timesteps, s=0.008):
43
+ """
44
+ cosine schedule
45
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
46
+ """
47
+ steps = timesteps + 1
48
+ x = np.linspace(0, steps, steps)
49
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
50
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
51
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
52
+ return np.clip(betas, a_min=0, a_max=0.999)
53
+
54
+
55
+ beta_schedule = {
56
+ "cosine": cosine_beta_schedule,
57
+ "linear": linear_beta_schedule,
58
+ }
59
+
60
+
61
+ class GaussianDiffusion(nn.Module):
62
+ def __init__(self,
63
+ denoise_fn,
64
+ out_dims=128,
65
+ timesteps=1000,
66
+ k_step=1000,
67
+ max_beta=0.02,
68
+ spec_min=-12,
69
+ spec_max=2):
70
+ super().__init__()
71
+ self.denoise_fn = denoise_fn
72
+ self.out_dims = out_dims
73
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
74
+
75
+ alphas = 1. - betas
76
+ alphas_cumprod = np.cumprod(alphas, axis=0)
77
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
78
+
79
+ timesteps, = betas.shape
80
+ self.num_timesteps = int(timesteps)
81
+ self.k_step = k_step
82
+
83
+ self.noise_list = deque(maxlen=4)
84
+
85
+ to_torch = partial(torch.tensor, dtype=torch.float32)
86
+
87
+ self.register_buffer('betas', to_torch(betas))
88
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
89
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
90
+
91
+ # calculations for diffusion q(x_t | x_{t-1}) and others
92
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
93
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
94
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
95
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
96
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
97
+
98
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
99
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
100
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
101
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
102
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
103
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
104
+ self.register_buffer('posterior_mean_coef1', to_torch(
105
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
106
+ self.register_buffer('posterior_mean_coef2', to_torch(
107
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
108
+
109
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
110
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
111
+
112
+ def q_mean_variance(self, x_start, t):
113
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
114
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
115
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
116
+ return mean, variance, log_variance
117
+
118
+ def predict_start_from_noise(self, x_t, t, noise):
119
+ return (
120
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
121
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
122
+ )
123
+
124
+ def q_posterior(self, x_start, x_t, t):
125
+ posterior_mean = (
126
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
127
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
128
+ )
129
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
130
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
131
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
132
+
133
+ def p_mean_variance(self, x, t, cond):
134
+ noise_pred = self.denoise_fn(x, t, cond=cond)
135
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
136
+
137
+ x_recon.clamp_(-1., 1.)
138
+
139
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
140
+ return model_mean, posterior_variance, posterior_log_variance
141
+
142
+ @torch.no_grad()
143
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
144
+ b, *_, device = *x.shape, x.device
145
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
146
+ noise = noise_like(x.shape, device, repeat_noise)
147
+ # no noise when t == 0
148
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
149
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
150
+
151
+ @torch.no_grad()
152
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
153
+ """
154
+ Use the PLMS method from
155
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
156
+ """
157
+
158
+ def get_x_pred(x, noise_t, t):
159
+ a_t = extract(self.alphas_cumprod, t, x.shape)
160
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
161
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
162
+
163
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
164
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
165
+ x_pred = x + x_delta
166
+
167
+ return x_pred
168
+
169
+ noise_list = self.noise_list
170
+ noise_pred = self.denoise_fn(x, t, cond=cond)
171
+
172
+ if len(noise_list) == 0:
173
+ x_pred = get_x_pred(x, noise_pred, t)
174
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
175
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
176
+ elif len(noise_list) == 1:
177
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
178
+ elif len(noise_list) == 2:
179
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
180
+ else:
181
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
182
+
183
+ x_prev = get_x_pred(x, noise_pred_prime, t)
184
+ noise_list.append(noise_pred)
185
+
186
+ return x_prev
187
+
188
+ def q_sample(self, x_start, t, noise=None):
189
+ noise = default(noise, lambda: torch.randn_like(x_start))
190
+ return (
191
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
192
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
193
+ )
194
+
195
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
196
+ noise = default(noise, lambda: torch.randn_like(x_start))
197
+
198
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
199
+ x_recon = self.denoise_fn(x_noisy, t, cond)
200
+
201
+ if loss_type == 'l1':
202
+ loss = (noise - x_recon).abs().mean()
203
+ elif loss_type == 'l2':
204
+ loss = F.mse_loss(noise, x_recon)
205
+ else:
206
+ raise NotImplementedError()
207
+
208
+ return loss
209
+
210
+ def forward(self,
211
+ condition,
212
+ gt_spec=None,
213
+ infer=True,
214
+ infer_speedup=10,
215
+ method='dpm-solver',
216
+ k_step=300,
217
+ use_tqdm=True):
218
+ """
219
+ conditioning diffusion, use fastspeech2 encoder output as the condition
220
+ """
221
+ cond = condition.transpose(1, 2)
222
+ b, device = condition.shape[0], condition.device
223
+
224
+ if not infer:
225
+ spec = self.norm_spec(gt_spec)
226
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
227
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
228
+ return self.p_losses(norm_spec, t, cond=cond)
229
+ else:
230
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
231
+
232
+ if gt_spec is None:
233
+ t = self.k_step
234
+ x = torch.randn(shape, device=device)
235
+ else:
236
+ t = k_step
237
+ norm_spec = self.norm_spec(gt_spec)
238
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
239
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
240
+
241
+ if method is not None and infer_speedup > 1:
242
+ if method == 'dpm-solver':
243
+ from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
244
+ # 1. Define the noise schedule.
245
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
246
+
247
+ # 2. Convert your discrete-time `model` to the continuous-time
248
+ # noise prediction model. Here is an example for a diffusion model
249
+ # `model` with the noise prediction type ("noise") .
250
+ def my_wrapper(fn):
251
+ def wrapped(x, t, **kwargs):
252
+ ret = fn(x, t, **kwargs)
253
+ if use_tqdm:
254
+ self.bar.update(1)
255
+ return ret
256
+
257
+ return wrapped
258
+
259
+ model_fn = model_wrapper(
260
+ my_wrapper(self.denoise_fn),
261
+ noise_schedule,
262
+ model_type="noise", # or "x_start" or "v" or "score"
263
+ model_kwargs={"cond": cond}
264
+ )
265
+
266
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
267
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
268
+ # You can adjust the `steps` to balance the computation
269
+ # costs and the sample quality.
270
+ dpm_solver = DPM_Solver(model_fn, noise_schedule)
271
+
272
+ steps = t // infer_speedup
273
+ if use_tqdm:
274
+ self.bar = tqdm(desc="sample time step", total=steps)
275
+ x = dpm_solver.sample(
276
+ x,
277
+ steps=steps,
278
+ order=3,
279
+ skip_type="time_uniform",
280
+ method="singlestep",
281
+ )
282
+ if use_tqdm:
283
+ self.bar.close()
284
+ elif method == 'pndm':
285
+ self.noise_list = deque(maxlen=4)
286
+ if use_tqdm:
287
+ for i in tqdm(
288
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
289
+ total=t // infer_speedup,
290
+ ):
291
+ x = self.p_sample_plms(
292
+ x, torch.full((b,), i, device=device, dtype=torch.long),
293
+ infer_speedup, cond=cond
294
+ )
295
+ else:
296
+ for i in reversed(range(0, t, infer_speedup)):
297
+ x = self.p_sample_plms(
298
+ x, torch.full((b,), i, device=device, dtype=torch.long),
299
+ infer_speedup, cond=cond
300
+ )
301
+ else:
302
+ raise NotImplementedError(method)
303
+ else:
304
+ if use_tqdm:
305
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
306
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
307
+ else:
308
+ for i in reversed(range(0, t)):
309
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
310
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
311
+ return self.denorm_spec(x)
312
+
313
+ def norm_spec(self, x):
314
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
315
+
316
+ def denorm_spec(self, x):
317
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
diffusion/diffusion_onnx.py ADDED
@@ -0,0 +1,612 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from functools import partial
3
+ from inspect import isfunction
4
+ import torch.nn.functional as F
5
+ import librosa.sequence
6
+ import numpy as np
7
+ from torch.nn import Conv1d
8
+ from torch.nn import Mish
9
+ import torch
10
+ from torch import nn
11
+ from tqdm import tqdm
12
+ import math
13
+
14
+
15
+ def exists(x):
16
+ return x is not None
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def extract(a, t):
26
+ return a[t].reshape((1, 1, 1, 1))
27
+
28
+
29
+ def noise_like(shape, device, repeat=False):
30
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
31
+ noise = lambda: torch.randn(shape, device=device)
32
+ return repeat_noise() if repeat else noise()
33
+
34
+
35
+ def linear_beta_schedule(timesteps, max_beta=0.02):
36
+ """
37
+ linear schedule
38
+ """
39
+ betas = np.linspace(1e-4, max_beta, timesteps)
40
+ return betas
41
+
42
+
43
+ def cosine_beta_schedule(timesteps, s=0.008):
44
+ """
45
+ cosine schedule
46
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
47
+ """
48
+ steps = timesteps + 1
49
+ x = np.linspace(0, steps, steps)
50
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
51
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
52
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
53
+ return np.clip(betas, a_min=0, a_max=0.999)
54
+
55
+
56
+ beta_schedule = {
57
+ "cosine": cosine_beta_schedule,
58
+ "linear": linear_beta_schedule,
59
+ }
60
+
61
+
62
+ def extract_1(a, t):
63
+ return a[t].reshape((1, 1, 1, 1))
64
+
65
+
66
+ def predict_stage0(noise_pred, noise_pred_prev):
67
+ return (noise_pred + noise_pred_prev) / 2
68
+
69
+
70
+ def predict_stage1(noise_pred, noise_list):
71
+ return (noise_pred * 3
72
+ - noise_list[-1]) / 2
73
+
74
+
75
+ def predict_stage2(noise_pred, noise_list):
76
+ return (noise_pred * 23
77
+ - noise_list[-1] * 16
78
+ + noise_list[-2] * 5) / 12
79
+
80
+
81
+ def predict_stage3(noise_pred, noise_list):
82
+ return (noise_pred * 55
83
+ - noise_list[-1] * 59
84
+ + noise_list[-2] * 37
85
+ - noise_list[-3] * 9) / 24
86
+
87
+
88
+ class SinusoidalPosEmb(nn.Module):
89
+ def __init__(self, dim):
90
+ super().__init__()
91
+ self.dim = dim
92
+ self.half_dim = dim // 2
93
+ self.emb = 9.21034037 / (self.half_dim - 1)
94
+ self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
95
+ self.emb = self.emb.cpu()
96
+
97
+ def forward(self, x):
98
+ emb = self.emb * x
99
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
100
+ return emb
101
+
102
+
103
+ class ResidualBlock(nn.Module):
104
+ def __init__(self, encoder_hidden, residual_channels, dilation):
105
+ super().__init__()
106
+ self.residual_channels = residual_channels
107
+ self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
108
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
109
+ self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
110
+ self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
111
+
112
+ def forward(self, x, conditioner, diffusion_step):
113
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
114
+ conditioner = self.conditioner_projection(conditioner)
115
+ y = x + diffusion_step
116
+ y = self.dilated_conv(y) + conditioner
117
+
118
+ gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
119
+
120
+ y = torch.sigmoid(gate) * torch.tanh(filter_1)
121
+ y = self.output_projection(y)
122
+
123
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
124
+
125
+ return (x + residual) / 1.41421356, skip
126
+
127
+
128
+ class DiffNet(nn.Module):
129
+ def __init__(self, in_dims, n_layers, n_chans, n_hidden):
130
+ super().__init__()
131
+ self.encoder_hidden = n_hidden
132
+ self.residual_layers = n_layers
133
+ self.residual_channels = n_chans
134
+ self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
135
+ self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
136
+ dim = self.residual_channels
137
+ self.mlp = nn.Sequential(
138
+ nn.Linear(dim, dim * 4),
139
+ Mish(),
140
+ nn.Linear(dim * 4, dim)
141
+ )
142
+ self.residual_layers = nn.ModuleList([
143
+ ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
144
+ for i in range(self.residual_layers)
145
+ ])
146
+ self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
147
+ self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
148
+ nn.init.zeros_(self.output_projection.weight)
149
+
150
+ def forward(self, spec, diffusion_step, cond):
151
+ x = spec.squeeze(0)
152
+ x = self.input_projection(x) # x [B, residual_channel, T]
153
+ x = F.relu(x)
154
+ # skip = torch.randn_like(x)
155
+ diffusion_step = diffusion_step.float()
156
+ diffusion_step = self.diffusion_embedding(diffusion_step)
157
+ diffusion_step = self.mlp(diffusion_step)
158
+
159
+ x, skip = self.residual_layers[0](x, cond, diffusion_step)
160
+ # noinspection PyTypeChecker
161
+ for layer in self.residual_layers[1:]:
162
+ x, skip_connection = layer.forward(x, cond, diffusion_step)
163
+ skip = skip + skip_connection
164
+ x = skip / math.sqrt(len(self.residual_layers))
165
+ x = self.skip_projection(x)
166
+ x = F.relu(x)
167
+ x = self.output_projection(x) # [B, 80, T]
168
+ return x.unsqueeze(1)
169
+
170
+
171
+ class AfterDiffusion(nn.Module):
172
+ def __init__(self, spec_max, spec_min, v_type='a'):
173
+ super().__init__()
174
+ self.spec_max = spec_max
175
+ self.spec_min = spec_min
176
+ self.type = v_type
177
+
178
+ def forward(self, x):
179
+ x = x.squeeze(1).permute(0, 2, 1)
180
+ mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
181
+ if self.type == 'nsf-hifigan-log10':
182
+ mel_out = mel_out * 0.434294
183
+ return mel_out.transpose(2, 1)
184
+
185
+
186
+ class Pred(nn.Module):
187
+ def __init__(self, alphas_cumprod):
188
+ super().__init__()
189
+ self.alphas_cumprod = alphas_cumprod
190
+
191
+ def forward(self, x_1, noise_t, t_1, t_prev):
192
+ a_t = extract(self.alphas_cumprod, t_1).cpu()
193
+ a_prev = extract(self.alphas_cumprod, t_prev).cpu()
194
+ a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
195
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
196
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
197
+ x_pred = x_1 + x_delta.cpu()
198
+
199
+ return x_pred
200
+
201
+
202
+ class GaussianDiffusion(nn.Module):
203
+ def __init__(self,
204
+ out_dims=128,
205
+ n_layers=20,
206
+ n_chans=384,
207
+ n_hidden=256,
208
+ timesteps=1000,
209
+ k_step=1000,
210
+ max_beta=0.02,
211
+ spec_min=-12,
212
+ spec_max=2):
213
+ super().__init__()
214
+ self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
215
+ self.out_dims = out_dims
216
+ self.mel_bins = out_dims
217
+ self.n_hidden = n_hidden
218
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
219
+
220
+ alphas = 1. - betas
221
+ alphas_cumprod = np.cumprod(alphas, axis=0)
222
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
223
+ timesteps, = betas.shape
224
+ self.num_timesteps = int(timesteps)
225
+ self.k_step = k_step
226
+
227
+ self.noise_list = deque(maxlen=4)
228
+
229
+ to_torch = partial(torch.tensor, dtype=torch.float32)
230
+
231
+ self.register_buffer('betas', to_torch(betas))
232
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
233
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
234
+
235
+ # calculations for diffusion q(x_t | x_{t-1}) and others
236
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
237
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
238
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
239
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
240
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
241
+
242
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
243
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
244
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
245
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
246
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
247
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
248
+ self.register_buffer('posterior_mean_coef1', to_torch(
249
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
250
+ self.register_buffer('posterior_mean_coef2', to_torch(
251
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
252
+
253
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
254
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
255
+ self.ad = AfterDiffusion(self.spec_max, self.spec_min)
256
+ self.xp = Pred(self.alphas_cumprod)
257
+
258
+ def q_mean_variance(self, x_start, t):
259
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
260
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
261
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
262
+ return mean, variance, log_variance
263
+
264
+ def predict_start_from_noise(self, x_t, t, noise):
265
+ return (
266
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
267
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
268
+ )
269
+
270
+ def q_posterior(self, x_start, x_t, t):
271
+ posterior_mean = (
272
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
273
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
274
+ )
275
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
276
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
277
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
278
+
279
+ def p_mean_variance(self, x, t, cond):
280
+ noise_pred = self.denoise_fn(x, t, cond=cond)
281
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
282
+
283
+ x_recon.clamp_(-1., 1.)
284
+
285
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
286
+ return model_mean, posterior_variance, posterior_log_variance
287
+
288
+ @torch.no_grad()
289
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
290
+ b, *_, device = *x.shape, x.device
291
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
292
+ noise = noise_like(x.shape, device, repeat_noise)
293
+ # no noise when t == 0
294
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
295
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
296
+
297
+ @torch.no_grad()
298
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
299
+ """
300
+ Use the PLMS method from
301
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
302
+ """
303
+
304
+ def get_x_pred(x, noise_t, t):
305
+ a_t = extract(self.alphas_cumprod, t)
306
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
307
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
308
+
309
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
310
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
311
+ x_pred = x + x_delta
312
+
313
+ return x_pred
314
+
315
+ noise_list = self.noise_list
316
+ noise_pred = self.denoise_fn(x, t, cond=cond)
317
+
318
+ if len(noise_list) == 0:
319
+ x_pred = get_x_pred(x, noise_pred, t)
320
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
321
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
322
+ elif len(noise_list) == 1:
323
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
324
+ elif len(noise_list) == 2:
325
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
326
+ else:
327
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
328
+
329
+ x_prev = get_x_pred(x, noise_pred_prime, t)
330
+ noise_list.append(noise_pred)
331
+
332
+ return x_prev
333
+
334
+ def q_sample(self, x_start, t, noise=None):
335
+ noise = default(noise, lambda: torch.randn_like(x_start))
336
+ return (
337
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
338
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
339
+ )
340
+
341
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
342
+ noise = default(noise, lambda: torch.randn_like(x_start))
343
+
344
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
345
+ x_recon = self.denoise_fn(x_noisy, t, cond)
346
+
347
+ if loss_type == 'l1':
348
+ loss = (noise - x_recon).abs().mean()
349
+ elif loss_type == 'l2':
350
+ loss = F.mse_loss(noise, x_recon)
351
+ else:
352
+ raise NotImplementedError()
353
+
354
+ return loss
355
+
356
+ def org_forward(self,
357
+ condition,
358
+ init_noise=None,
359
+ gt_spec=None,
360
+ infer=True,
361
+ infer_speedup=100,
362
+ method='pndm',
363
+ k_step=1000,
364
+ use_tqdm=True):
365
+ """
366
+ conditioning diffusion, use fastspeech2 encoder output as the condition
367
+ """
368
+ cond = condition
369
+ b, device = condition.shape[0], condition.device
370
+ if not infer:
371
+ spec = self.norm_spec(gt_spec)
372
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
373
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
374
+ return self.p_losses(norm_spec, t, cond=cond)
375
+ else:
376
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
377
+
378
+ if gt_spec is None:
379
+ t = self.k_step
380
+ if init_noise is None:
381
+ x = torch.randn(shape, device=device)
382
+ else:
383
+ x = init_noise
384
+ else:
385
+ t = k_step
386
+ norm_spec = self.norm_spec(gt_spec)
387
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
388
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
389
+
390
+ if method is not None and infer_speedup > 1:
391
+ if method == 'dpm-solver':
392
+ from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
393
+ # 1. Define the noise schedule.
394
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
395
+
396
+ # 2. Convert your discrete-time `model` to the continuous-time
397
+ # noise prediction model. Here is an example for a diffusion model
398
+ # `model` with the noise prediction type ("noise") .
399
+ def my_wrapper(fn):
400
+ def wrapped(x, t, **kwargs):
401
+ ret = fn(x, t, **kwargs)
402
+ if use_tqdm:
403
+ self.bar.update(1)
404
+ return ret
405
+
406
+ return wrapped
407
+
408
+ model_fn = model_wrapper(
409
+ my_wrapper(self.denoise_fn),
410
+ noise_schedule,
411
+ model_type="noise", # or "x_start" or "v" or "score"
412
+ model_kwargs={"cond": cond}
413
+ )
414
+
415
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
416
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
417
+ # You can adjust the `steps` to balance the computation
418
+ # costs and the sample quality.
419
+ dpm_solver = DPM_Solver(model_fn, noise_schedule)
420
+
421
+ steps = t // infer_speedup
422
+ if use_tqdm:
423
+ self.bar = tqdm(desc="sample time step", total=steps)
424
+ x = dpm_solver.sample(
425
+ x,
426
+ steps=steps,
427
+ order=3,
428
+ skip_type="time_uniform",
429
+ method="singlestep",
430
+ )
431
+ if use_tqdm:
432
+ self.bar.close()
433
+ elif method == 'pndm':
434
+ self.noise_list = deque(maxlen=4)
435
+ if use_tqdm:
436
+ for i in tqdm(
437
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
438
+ total=t // infer_speedup,
439
+ ):
440
+ x = self.p_sample_plms(
441
+ x, torch.full((b,), i, device=device, dtype=torch.long),
442
+ infer_speedup, cond=cond
443
+ )
444
+ else:
445
+ for i in reversed(range(0, t, infer_speedup)):
446
+ x = self.p_sample_plms(
447
+ x, torch.full((b,), i, device=device, dtype=torch.long),
448
+ infer_speedup, cond=cond
449
+ )
450
+ else:
451
+ raise NotImplementedError(method)
452
+ else:
453
+ if use_tqdm:
454
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
455
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
456
+ else:
457
+ for i in reversed(range(0, t)):
458
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
459
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
460
+ return self.denorm_spec(x).transpose(2, 1)
461
+
462
+ def norm_spec(self, x):
463
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
464
+
465
+ def denorm_spec(self, x):
466
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
467
+
468
+ def get_x_pred(self, x_1, noise_t, t_1, t_prev):
469
+ a_t = extract(self.alphas_cumprod, t_1)
470
+ a_prev = extract(self.alphas_cumprod, t_prev)
471
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
472
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
473
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
474
+ x_pred = x_1 + x_delta
475
+ return x_pred
476
+
477
+ def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
478
+ cond = torch.randn([1, self.n_hidden, 10]).cpu()
479
+ if init_noise is None:
480
+ x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
481
+ else:
482
+ x = init_noise
483
+ pndms = 100
484
+
485
+ org_y_x = self.org_forward(cond, init_noise=x)
486
+
487
+ device = cond.device
488
+ n_frames = cond.shape[2]
489
+ step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
490
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
491
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
492
+
493
+ ot = step_range[0]
494
+ ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
495
+ if export_denoise:
496
+ torch.onnx.export(
497
+ self.denoise_fn,
498
+ (x.cpu(), ot_1.cpu(), cond.cpu()),
499
+ f"{project_name}_denoise.onnx",
500
+ input_names=["noise", "time", "condition"],
501
+ output_names=["noise_pred"],
502
+ dynamic_axes={
503
+ "noise": [3],
504
+ "condition": [2]
505
+ },
506
+ opset_version=16
507
+ )
508
+
509
+ for t in step_range:
510
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
511
+ noise_pred = self.denoise_fn(x, t_1, cond)
512
+ t_prev = t_1 - pndms
513
+ t_prev = t_prev * (t_prev > 0)
514
+ if plms_noise_stage == 0:
515
+ if export_pred:
516
+ torch.onnx.export(
517
+ self.xp,
518
+ (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
519
+ f"{project_name}_pred.onnx",
520
+ input_names=["noise", "noise_pred", "time", "time_prev"],
521
+ output_names=["noise_pred_o"],
522
+ dynamic_axes={
523
+ "noise": [3],
524
+ "noise_pred": [3]
525
+ },
526
+ opset_version=16
527
+ )
528
+
529
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
530
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
531
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
532
+
533
+ elif plms_noise_stage == 1:
534
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
535
+
536
+ elif plms_noise_stage == 2:
537
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
538
+
539
+ else:
540
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
541
+
542
+ noise_pred = noise_pred.unsqueeze(0)
543
+
544
+ if plms_noise_stage < 3:
545
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
546
+ plms_noise_stage = plms_noise_stage + 1
547
+
548
+ else:
549
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
550
+
551
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
552
+ if export_after:
553
+ torch.onnx.export(
554
+ self.ad,
555
+ x.cpu(),
556
+ f"{project_name}_after.onnx",
557
+ input_names=["x"],
558
+ output_names=["mel_out"],
559
+ dynamic_axes={
560
+ "x": [3]
561
+ },
562
+ opset_version=16
563
+ )
564
+ x = self.ad(x)
565
+
566
+ print((x == org_y_x).all())
567
+ return x
568
+
569
+ def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
570
+ cond = condition
571
+ x = init_noise
572
+
573
+ device = cond.device
574
+ n_frames = cond.shape[2]
575
+ step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
576
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
577
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
578
+
579
+ ot = step_range[0]
580
+ ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
581
+
582
+ for t in step_range:
583
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
584
+ noise_pred = self.denoise_fn(x, t_1, cond)
585
+ t_prev = t_1 - pndms
586
+ t_prev = t_prev * (t_prev > 0)
587
+ if plms_noise_stage == 0:
588
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
589
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
590
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
591
+
592
+ elif plms_noise_stage == 1:
593
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
594
+
595
+ elif plms_noise_stage == 2:
596
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
597
+
598
+ else:
599
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
600
+
601
+ noise_pred = noise_pred.unsqueeze(0)
602
+
603
+ if plms_noise_stage < 3:
604
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
605
+ plms_noise_stage = plms_noise_stage + 1
606
+
607
+ else:
608
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
609
+
610
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
611
+ x = self.ad(x)
612
+ return x
diffusion/dpm_solver_pytorch.py ADDED
@@ -0,0 +1,1201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+
5
+
6
+ class NoiseScheduleVP:
7
+ def __init__(
8
+ self,
9
+ schedule='discrete',
10
+ betas=None,
11
+ alphas_cumprod=None,
12
+ continuous_beta_0=0.1,
13
+ continuous_beta_1=20.,
14
+ ):
15
+ """Create a wrapper class for the forward SDE (VP type).
16
+
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+
22
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
+
26
+ log_alpha_t = self.marginal_log_mean_coeff(t)
27
+ sigma_t = self.marginal_std(t)
28
+ lambda_t = self.marginal_lambda(t)
29
+
30
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
+
32
+ t = self.inverse_lambda(lambda_t)
33
+
34
+ ===============================================================
35
+
36
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
+
38
+ 1. For discrete-time DPMs:
39
+
40
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
+ t_i = (i + 1) / N
42
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
+
45
+ Args:
46
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
+
49
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
+
51
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
+ and
57
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
+
59
+
60
+ 2. For continuous-time DPMs:
61
+
62
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
+ schedule are the default settings in DDPM and improved-DDPM:
64
+
65
+ Args:
66
+ beta_min: A `float` number. The smallest beta for the linear schedule.
67
+ beta_max: A `float` number. The largest beta for the linear schedule.
68
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
+ T: A `float` number. The ending time of the forward process.
71
+
72
+ ===============================================================
73
+
74
+ Args:
75
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
+ 'linear' or 'cosine' for continuous-time DPMs.
77
+ Returns:
78
+ A wrapper object of the forward SDE (VP type).
79
+
80
+ ===============================================================
81
+
82
+ Example:
83
+
84
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
+
87
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
+
90
+ # For continuous-time DPMs (VPSDE), linear schedule:
91
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
+
93
+ """
94
+
95
+ if schedule not in ['discrete', 'linear', 'cosine']:
96
+ raise ValueError(
97
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
98
+ schedule))
99
+
100
+ self.schedule = schedule
101
+ if schedule == 'discrete':
102
+ if betas is not None:
103
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
104
+ else:
105
+ assert alphas_cumprod is not None
106
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
107
+ self.total_N = len(log_alphas)
108
+ self.T = 1.
109
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
110
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
111
+ else:
112
+ self.total_N = 1000
113
+ self.beta_0 = continuous_beta_0
114
+ self.beta_1 = continuous_beta_1
115
+ self.cosine_s = 0.008
116
+ self.cosine_beta_max = 999.
117
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
118
+ 1. + self.cosine_s) / math.pi - self.cosine_s
119
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
120
+ self.schedule = schedule
121
+ if schedule == 'cosine':
122
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
123
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
124
+ self.T = 0.9946
125
+ else:
126
+ self.T = 1.
127
+
128
+ def marginal_log_mean_coeff(self, t):
129
+ """
130
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
131
+ """
132
+ if self.schedule == 'discrete':
133
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
134
+ self.log_alpha_array.to(t.device)).reshape((-1))
135
+ elif self.schedule == 'linear':
136
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
137
+ elif self.schedule == 'cosine':
138
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
139
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
140
+ return log_alpha_t
141
+
142
+ def marginal_alpha(self, t):
143
+ """
144
+ Compute alpha_t of a given continuous-time label t in [0, T].
145
+ """
146
+ return torch.exp(self.marginal_log_mean_coeff(t))
147
+
148
+ def marginal_std(self, t):
149
+ """
150
+ Compute sigma_t of a given continuous-time label t in [0, T].
151
+ """
152
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
153
+
154
+ def marginal_lambda(self, t):
155
+ """
156
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
157
+ """
158
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
159
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
160
+ return log_mean_coeff - log_std
161
+
162
+ def inverse_lambda(self, lamb):
163
+ """
164
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
165
+ """
166
+ if self.schedule == 'linear':
167
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
168
+ Delta = self.beta_0 ** 2 + tmp
169
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
170
+ elif self.schedule == 'discrete':
171
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
172
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
173
+ torch.flip(self.t_array.to(lamb.device), [1]))
174
+ return t.reshape((-1,))
175
+ else:
176
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
177
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
178
+ 1. + self.cosine_s) / math.pi - self.cosine_s
179
+ t = t_fn(log_alpha)
180
+ return t
181
+
182
+
183
+ def model_wrapper(
184
+ model,
185
+ noise_schedule,
186
+ model_type="noise",
187
+ model_kwargs={},
188
+ guidance_type="uncond",
189
+ condition=None,
190
+ unconditional_condition=None,
191
+ guidance_scale=1.,
192
+ classifier_fn=None,
193
+ classifier_kwargs={},
194
+ ):
195
+ """Create a wrapper function for the noise prediction model.
196
+
197
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
198
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
199
+
200
+ We support four types of the diffusion model by setting `model_type`:
201
+
202
+ 1. "noise": noise prediction model. (Trained by predicting noise).
203
+
204
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
205
+
206
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
207
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
208
+
209
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
210
+ arXiv preprint arXiv:2202.00512 (2022).
211
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
212
+ arXiv preprint arXiv:2210.02303 (2022).
213
+
214
+ 4. "score": marginal score function. (Trained by denoising score matching).
215
+ Note that the score function and the noise prediction model follows a simple relationship:
216
+ ```
217
+ noise(x_t, t) = -sigma_t * score(x_t, t)
218
+ ```
219
+
220
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
221
+ 1. "uncond": unconditional sampling by DPMs.
222
+ The input `model` has the following format:
223
+ ``
224
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
+ ``
226
+
227
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
228
+ The input `model` has the following format:
229
+ ``
230
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
231
+ ``
232
+
233
+ The input `classifier_fn` has the following format:
234
+ ``
235
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
236
+ ``
237
+
238
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
239
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
240
+
241
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
242
+ The input `model` has the following format:
243
+ ``
244
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
245
+ ``
246
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
247
+
248
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
249
+ arXiv preprint arXiv:2207.12598 (2022).
250
+
251
+
252
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
253
+ or continuous-time labels (i.e. epsilon to T).
254
+
255
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
256
+ ``
257
+ def model_fn(x, t_continuous) -> noise:
258
+ t_input = get_model_input_time(t_continuous)
259
+ return noise_pred(model, x, t_input, **model_kwargs)
260
+ ``
261
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
262
+
263
+ ===============================================================
264
+
265
+ Args:
266
+ model: A diffusion model with the corresponding format described above.
267
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
268
+ model_type: A `str`. The parameterization type of the diffusion model.
269
+ "noise" or "x_start" or "v" or "score".
270
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
271
+ guidance_type: A `str`. The type of the guidance for sampling.
272
+ "uncond" or "classifier" or "classifier-free".
273
+ condition: A pytorch tensor. The condition for the guided sampling.
274
+ Only used for "classifier" or "classifier-free" guidance type.
275
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
276
+ Only used for "classifier-free" guidance type.
277
+ guidance_scale: A `float`. The scale for the guided sampling.
278
+ classifier_fn: A classifier function. Only used for the classifier guidance.
279
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
280
+ Returns:
281
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
282
+ """
283
+
284
+ def get_model_input_time(t_continuous):
285
+ """
286
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
287
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
288
+ For continuous-time DPMs, we just use `t_continuous`.
289
+ """
290
+ if noise_schedule.schedule == 'discrete':
291
+ return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
292
+ else:
293
+ return t_continuous
294
+
295
+ def noise_pred_fn(x, t_continuous, cond=None):
296
+ if t_continuous.reshape((-1,)).shape[0] == 1:
297
+ t_continuous = t_continuous.expand((x.shape[0]))
298
+ t_input = get_model_input_time(t_continuous)
299
+ if cond is None:
300
+ output = model(x, t_input, **model_kwargs)
301
+ else:
302
+ output = model(x, t_input, cond, **model_kwargs)
303
+ if model_type == "noise":
304
+ return output
305
+ elif model_type == "x_start":
306
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
307
+ dims = x.dim()
308
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
309
+ elif model_type == "v":
310
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
311
+ dims = x.dim()
312
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
313
+ elif model_type == "score":
314
+ sigma_t = noise_schedule.marginal_std(t_continuous)
315
+ dims = x.dim()
316
+ return -expand_dims(sigma_t, dims) * output
317
+
318
+ def cond_grad_fn(x, t_input):
319
+ """
320
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
321
+ """
322
+ with torch.enable_grad():
323
+ x_in = x.detach().requires_grad_(True)
324
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
325
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
326
+
327
+ def model_fn(x, t_continuous):
328
+ """
329
+ The noise predicition model function that is used for DPM-Solver.
330
+ """
331
+ if t_continuous.reshape((-1,)).shape[0] == 1:
332
+ t_continuous = t_continuous.expand((x.shape[0]))
333
+ if guidance_type == "uncond":
334
+ return noise_pred_fn(x, t_continuous)
335
+ elif guidance_type == "classifier":
336
+ assert classifier_fn is not None
337
+ t_input = get_model_input_time(t_continuous)
338
+ cond_grad = cond_grad_fn(x, t_input)
339
+ sigma_t = noise_schedule.marginal_std(t_continuous)
340
+ noise = noise_pred_fn(x, t_continuous)
341
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
342
+ elif guidance_type == "classifier-free":
343
+ if guidance_scale == 1. or unconditional_condition is None:
344
+ return noise_pred_fn(x, t_continuous, cond=condition)
345
+ else:
346
+ x_in = torch.cat([x] * 2)
347
+ t_in = torch.cat([t_continuous] * 2)
348
+ c_in = torch.cat([unconditional_condition, condition])
349
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
350
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
351
+
352
+ assert model_type in ["noise", "x_start", "v"]
353
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
354
+ return model_fn
355
+
356
+
357
+ class DPM_Solver:
358
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
359
+ """Construct a DPM-Solver.
360
+
361
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
362
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
363
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
364
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
365
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
366
+
367
+ Args:
368
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
369
+ ``
370
+ def model_fn(x, t_continuous):
371
+ return noise
372
+ ``
373
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
374
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
375
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
376
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
377
+
378
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
379
+ """
380
+ self.model = model_fn
381
+ self.noise_schedule = noise_schedule
382
+ self.predict_x0 = predict_x0
383
+ self.thresholding = thresholding
384
+ self.max_val = max_val
385
+
386
+ def noise_prediction_fn(self, x, t):
387
+ """
388
+ Return the noise prediction model.
389
+ """
390
+ return self.model(x, t)
391
+
392
+ def data_prediction_fn(self, x, t):
393
+ """
394
+ Return the data prediction model (with thresholding).
395
+ """
396
+ noise = self.noise_prediction_fn(x, t)
397
+ dims = x.dim()
398
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
399
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
400
+ if self.thresholding:
401
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
402
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
403
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
404
+ x0 = torch.clamp(x0, -s, s) / s
405
+ return x0
406
+
407
+ def model_fn(self, x, t):
408
+ """
409
+ Convert the model to the noise prediction model or the data prediction model.
410
+ """
411
+ if self.predict_x0:
412
+ return self.data_prediction_fn(x, t)
413
+ else:
414
+ return self.noise_prediction_fn(x, t)
415
+
416
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
417
+ """Compute the intermediate time steps for sampling.
418
+
419
+ Args:
420
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
421
+ - 'logSNR': uniform logSNR for the time steps.
422
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
423
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
424
+ t_T: A `float`. The starting time of the sampling (default is T).
425
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
426
+ N: A `int`. The total number of the spacing of the time steps.
427
+ device: A torch device.
428
+ Returns:
429
+ A pytorch tensor of the time steps, with the shape (N + 1,).
430
+ """
431
+ if skip_type == 'logSNR':
432
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
433
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
434
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
435
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
436
+ elif skip_type == 'time_uniform':
437
+ return torch.linspace(t_T, t_0, N + 1).to(device)
438
+ elif skip_type == 'time_quadratic':
439
+ t_order = 2
440
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
441
+ return t
442
+ else:
443
+ raise ValueError(
444
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
445
+
446
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
447
+ """
448
+ Get the order of each step for sampling by the singlestep DPM-Solver.
449
+
450
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
451
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
452
+ - If order == 1:
453
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
454
+ - If order == 2:
455
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
456
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
457
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
458
+ - If order == 3:
459
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
460
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
461
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
462
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
463
+
464
+ ============================================
465
+ Args:
466
+ order: A `int`. The max order for the solver (2 or 3).
467
+ steps: A `int`. The total number of function evaluations (NFE).
468
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
469
+ - 'logSNR': uniform logSNR for the time steps.
470
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
471
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
472
+ t_T: A `float`. The starting time of the sampling (default is T).
473
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
474
+ device: A torch device.
475
+ Returns:
476
+ orders: A list of the solver order of each step.
477
+ """
478
+ if order == 3:
479
+ K = steps // 3 + 1
480
+ if steps % 3 == 0:
481
+ orders = [3, ] * (K - 2) + [2, 1]
482
+ elif steps % 3 == 1:
483
+ orders = [3, ] * (K - 1) + [1]
484
+ else:
485
+ orders = [3, ] * (K - 1) + [2]
486
+ elif order == 2:
487
+ if steps % 2 == 0:
488
+ K = steps // 2
489
+ orders = [2, ] * K
490
+ else:
491
+ K = steps // 2 + 1
492
+ orders = [2, ] * (K - 1) + [1]
493
+ elif order == 1:
494
+ K = 1
495
+ orders = [1, ] * steps
496
+ else:
497
+ raise ValueError("'order' must be '1' or '2' or '3'.")
498
+ if skip_type == 'logSNR':
499
+ # To reproduce the results in DPM-Solver paper
500
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
501
+ else:
502
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
503
+ torch.cumsum(torch.tensor([0, ] + orders), dim=0).to(device)]
504
+ return timesteps_outer, orders
505
+
506
+ def denoise_fn(self, x, s):
507
+ """
508
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
509
+ """
510
+ return self.data_prediction_fn(x, s)
511
+
512
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
513
+ """
514
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
515
+
516
+ Args:
517
+ x: A pytorch tensor. The initial value at time `s`.
518
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
519
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
520
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
521
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
522
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
523
+ Returns:
524
+ x_t: A pytorch tensor. The approximated solution at time `t`.
525
+ """
526
+ ns = self.noise_schedule
527
+ dims = x.dim()
528
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
529
+ h = lambda_t - lambda_s
530
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
531
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
532
+ alpha_t = torch.exp(log_alpha_t)
533
+
534
+ if self.predict_x0:
535
+ phi_1 = torch.expm1(-h)
536
+ if model_s is None:
537
+ model_s = self.model_fn(x, s)
538
+ x_t = (
539
+ expand_dims(sigma_t / sigma_s, dims) * x
540
+ - expand_dims(alpha_t * phi_1, dims) * model_s
541
+ )
542
+ if return_intermediate:
543
+ return x_t, {'model_s': model_s}
544
+ else:
545
+ return x_t
546
+ else:
547
+ phi_1 = torch.expm1(h)
548
+ if model_s is None:
549
+ model_s = self.model_fn(x, s)
550
+ x_t = (
551
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
552
+ - expand_dims(sigma_t * phi_1, dims) * model_s
553
+ )
554
+ if return_intermediate:
555
+ return x_t, {'model_s': model_s}
556
+ else:
557
+ return x_t
558
+
559
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
560
+ solver_type='dpm_solver'):
561
+ """
562
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
563
+
564
+ Args:
565
+ x: A pytorch tensor. The initial value at time `s`.
566
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
567
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
568
+ r1: A `float`. The hyperparameter of the second-order solver.
569
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
570
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
571
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
572
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
573
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
574
+ Returns:
575
+ x_t: A pytorch tensor. The approximated solution at time `t`.
576
+ """
577
+ if solver_type not in ['dpm_solver', 'taylor']:
578
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
579
+ if r1 is None:
580
+ r1 = 0.5
581
+ ns = self.noise_schedule
582
+ dims = x.dim()
583
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
584
+ h = lambda_t - lambda_s
585
+ lambda_s1 = lambda_s + r1 * h
586
+ s1 = ns.inverse_lambda(lambda_s1)
587
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
588
+ s1), ns.marginal_log_mean_coeff(t)
589
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
590
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
591
+
592
+ if self.predict_x0:
593
+ phi_11 = torch.expm1(-r1 * h)
594
+ phi_1 = torch.expm1(-h)
595
+
596
+ if model_s is None:
597
+ model_s = self.model_fn(x, s)
598
+ x_s1 = (
599
+ expand_dims(sigma_s1 / sigma_s, dims) * x
600
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
601
+ )
602
+ model_s1 = self.model_fn(x_s1, s1)
603
+ if solver_type == 'dpm_solver':
604
+ x_t = (
605
+ expand_dims(sigma_t / sigma_s, dims) * x
606
+ - expand_dims(alpha_t * phi_1, dims) * model_s
607
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
608
+ )
609
+ elif solver_type == 'taylor':
610
+ x_t = (
611
+ expand_dims(sigma_t / sigma_s, dims) * x
612
+ - expand_dims(alpha_t * phi_1, dims) * model_s
613
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
614
+ model_s1 - model_s)
615
+ )
616
+ else:
617
+ phi_11 = torch.expm1(r1 * h)
618
+ phi_1 = torch.expm1(h)
619
+
620
+ if model_s is None:
621
+ model_s = self.model_fn(x, s)
622
+ x_s1 = (
623
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
624
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
625
+ )
626
+ model_s1 = self.model_fn(x_s1, s1)
627
+ if solver_type == 'dpm_solver':
628
+ x_t = (
629
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
630
+ - expand_dims(sigma_t * phi_1, dims) * model_s
631
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
632
+ )
633
+ elif solver_type == 'taylor':
634
+ x_t = (
635
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
636
+ - expand_dims(sigma_t * phi_1, dims) * model_s
637
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
638
+ )
639
+ if return_intermediate:
640
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
641
+ else:
642
+ return x_t
643
+
644
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
645
+ return_intermediate=False, solver_type='dpm_solver'):
646
+ """
647
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
648
+
649
+ Args:
650
+ x: A pytorch tensor. The initial value at time `s`.
651
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
652
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
653
+ r1: A `float`. The hyperparameter of the third-order solver.
654
+ r2: A `float`. The hyperparameter of the third-order solver.
655
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
656
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
657
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
658
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
659
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
660
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
661
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
662
+ Returns:
663
+ x_t: A pytorch tensor. The approximated solution at time `t`.
664
+ """
665
+ if solver_type not in ['dpm_solver', 'taylor']:
666
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
667
+ if r1 is None:
668
+ r1 = 1. / 3.
669
+ if r2 is None:
670
+ r2 = 2. / 3.
671
+ ns = self.noise_schedule
672
+ dims = x.dim()
673
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
674
+ h = lambda_t - lambda_s
675
+ lambda_s1 = lambda_s + r1 * h
676
+ lambda_s2 = lambda_s + r2 * h
677
+ s1 = ns.inverse_lambda(lambda_s1)
678
+ s2 = ns.inverse_lambda(lambda_s2)
679
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
680
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
681
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
682
+ s2), ns.marginal_std(t)
683
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
684
+
685
+ if self.predict_x0:
686
+ phi_11 = torch.expm1(-r1 * h)
687
+ phi_12 = torch.expm1(-r2 * h)
688
+ phi_1 = torch.expm1(-h)
689
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
690
+ phi_2 = phi_1 / h + 1.
691
+ phi_3 = phi_2 / h - 0.5
692
+
693
+ if model_s is None:
694
+ model_s = self.model_fn(x, s)
695
+ if model_s1 is None:
696
+ x_s1 = (
697
+ expand_dims(sigma_s1 / sigma_s, dims) * x
698
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
699
+ )
700
+ model_s1 = self.model_fn(x_s1, s1)
701
+ x_s2 = (
702
+ expand_dims(sigma_s2 / sigma_s, dims) * x
703
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
704
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
705
+ )
706
+ model_s2 = self.model_fn(x_s2, s2)
707
+ if solver_type == 'dpm_solver':
708
+ x_t = (
709
+ expand_dims(sigma_t / sigma_s, dims) * x
710
+ - expand_dims(alpha_t * phi_1, dims) * model_s
711
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
712
+ )
713
+ elif solver_type == 'taylor':
714
+ D1_0 = (1. / r1) * (model_s1 - model_s)
715
+ D1_1 = (1. / r2) * (model_s2 - model_s)
716
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
717
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
718
+ x_t = (
719
+ expand_dims(sigma_t / sigma_s, dims) * x
720
+ - expand_dims(alpha_t * phi_1, dims) * model_s
721
+ + expand_dims(alpha_t * phi_2, dims) * D1
722
+ - expand_dims(alpha_t * phi_3, dims) * D2
723
+ )
724
+ else:
725
+ phi_11 = torch.expm1(r1 * h)
726
+ phi_12 = torch.expm1(r2 * h)
727
+ phi_1 = torch.expm1(h)
728
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
729
+ phi_2 = phi_1 / h - 1.
730
+ phi_3 = phi_2 / h - 0.5
731
+
732
+ if model_s is None:
733
+ model_s = self.model_fn(x, s)
734
+ if model_s1 is None:
735
+ x_s1 = (
736
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
737
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
738
+ )
739
+ model_s1 = self.model_fn(x_s1, s1)
740
+ x_s2 = (
741
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
742
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
743
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
744
+ )
745
+ model_s2 = self.model_fn(x_s2, s2)
746
+ if solver_type == 'dpm_solver':
747
+ x_t = (
748
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
749
+ - expand_dims(sigma_t * phi_1, dims) * model_s
750
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
751
+ )
752
+ elif solver_type == 'taylor':
753
+ D1_0 = (1. / r1) * (model_s1 - model_s)
754
+ D1_1 = (1. / r2) * (model_s2 - model_s)
755
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
756
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
757
+ x_t = (
758
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
759
+ - expand_dims(sigma_t * phi_1, dims) * model_s
760
+ - expand_dims(sigma_t * phi_2, dims) * D1
761
+ - expand_dims(sigma_t * phi_3, dims) * D2
762
+ )
763
+
764
+ if return_intermediate:
765
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
766
+ else:
767
+ return x_t
768
+
769
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
770
+ """
771
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
772
+
773
+ Args:
774
+ x: A pytorch tensor. The initial value at time `s`.
775
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
776
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
777
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
778
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
779
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
780
+ Returns:
781
+ x_t: A pytorch tensor. The approximated solution at time `t`.
782
+ """
783
+ if solver_type not in ['dpm_solver', 'taylor']:
784
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
785
+ ns = self.noise_schedule
786
+ dims = x.dim()
787
+ model_prev_1, model_prev_0 = model_prev_list
788
+ t_prev_1, t_prev_0 = t_prev_list
789
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
790
+ t_prev_0), ns.marginal_lambda(t)
791
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
792
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
793
+ alpha_t = torch.exp(log_alpha_t)
794
+
795
+ h_0 = lambda_prev_0 - lambda_prev_1
796
+ h = lambda_t - lambda_prev_0
797
+ r0 = h_0 / h
798
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
799
+ if self.predict_x0:
800
+ if solver_type == 'dpm_solver':
801
+ x_t = (
802
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
803
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
804
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
805
+ )
806
+ elif solver_type == 'taylor':
807
+ x_t = (
808
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
809
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
810
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
811
+ )
812
+ else:
813
+ if solver_type == 'dpm_solver':
814
+ x_t = (
815
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
816
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
817
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
818
+ )
819
+ elif solver_type == 'taylor':
820
+ x_t = (
821
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
822
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
823
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
824
+ )
825
+ return x_t
826
+
827
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
828
+ """
829
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
830
+
831
+ Args:
832
+ x: A pytorch tensor. The initial value at time `s`.
833
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
834
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
835
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
836
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
837
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
838
+ Returns:
839
+ x_t: A pytorch tensor. The approximated solution at time `t`.
840
+ """
841
+ ns = self.noise_schedule
842
+ dims = x.dim()
843
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
844
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
845
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
846
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
847
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
848
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
849
+ alpha_t = torch.exp(log_alpha_t)
850
+
851
+ h_1 = lambda_prev_1 - lambda_prev_2
852
+ h_0 = lambda_prev_0 - lambda_prev_1
853
+ h = lambda_t - lambda_prev_0
854
+ r0, r1 = h_0 / h, h_1 / h
855
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
856
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
857
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
858
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
859
+ if self.predict_x0:
860
+ x_t = (
861
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
862
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
863
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
864
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
865
+ )
866
+ else:
867
+ x_t = (
868
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
869
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
870
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
871
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
872
+ )
873
+ return x_t
874
+
875
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
876
+ r2=None):
877
+ """
878
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
879
+
880
+ Args:
881
+ x: A pytorch tensor. The initial value at time `s`.
882
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
883
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
884
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
885
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
886
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
887
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
888
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
889
+ r2: A `float`. The hyperparameter of the third-order solver.
890
+ Returns:
891
+ x_t: A pytorch tensor. The approximated solution at time `t`.
892
+ """
893
+ if order == 1:
894
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
895
+ elif order == 2:
896
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
897
+ solver_type=solver_type, r1=r1)
898
+ elif order == 3:
899
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
900
+ solver_type=solver_type, r1=r1, r2=r2)
901
+ else:
902
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
903
+
904
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
905
+ """
906
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
907
+
908
+ Args:
909
+ x: A pytorch tensor. The initial value at time `s`.
910
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
911
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
912
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
913
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
914
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
915
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
916
+ Returns:
917
+ x_t: A pytorch tensor. The approximated solution at time `t`.
918
+ """
919
+ if order == 1:
920
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
921
+ elif order == 2:
922
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
923
+ elif order == 3:
924
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
925
+ else:
926
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
927
+
928
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
929
+ solver_type='dpm_solver'):
930
+ """
931
+ The adaptive step size solver based on singlestep DPM-Solver.
932
+
933
+ Args:
934
+ x: A pytorch tensor. The initial value at time `t_T`.
935
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
936
+ t_T: A `float`. The starting time of the sampling (default is T).
937
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
938
+ h_init: A `float`. The initial step size (for logSNR).
939
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
940
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
941
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
942
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
943
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
944
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
945
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
946
+ Returns:
947
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
948
+
949
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
950
+ """
951
+ ns = self.noise_schedule
952
+ s = t_T * torch.ones((x.shape[0],)).to(x)
953
+ lambda_s = ns.marginal_lambda(s)
954
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
955
+ h = h_init * torch.ones_like(s).to(x)
956
+ x_prev = x
957
+ nfe = 0
958
+ if order == 2:
959
+ r1 = 0.5
960
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
961
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
962
+ solver_type=solver_type,
963
+ **kwargs)
964
+ elif order == 3:
965
+ r1, r2 = 1. / 3., 2. / 3.
966
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
967
+ return_intermediate=True,
968
+ solver_type=solver_type)
969
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
970
+ solver_type=solver_type,
971
+ **kwargs)
972
+ else:
973
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
974
+ while torch.abs((s - t_0)).mean() > t_err:
975
+ t = ns.inverse_lambda(lambda_s + h)
976
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
977
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
978
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
979
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
980
+ E = norm_fn((x_higher - x_lower) / delta).max()
981
+ if torch.all(E <= 1.):
982
+ x = x_higher
983
+ s = t
984
+ x_prev = x_lower
985
+ lambda_s = ns.marginal_lambda(s)
986
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
987
+ nfe += order
988
+ print('adaptive solver nfe', nfe)
989
+ return x
990
+
991
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
992
+ method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
993
+ rtol=0.05,
994
+ ):
995
+ """
996
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
997
+
998
+ =====================================================
999
+
1000
+ We support the following algorithms for both noise prediction model and data prediction model:
1001
+ - 'singlestep':
1002
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
1003
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
1004
+ The total number of function evaluations (NFE) == `steps`.
1005
+ Given a fixed NFE == `steps`, the sampling procedure is:
1006
+ - If `order` == 1:
1007
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
1008
+ - If `order` == 2:
1009
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
1010
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
1011
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1012
+ - If `order` == 3:
1013
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
1014
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1015
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
1016
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
1017
+ - 'multistep':
1018
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
1019
+ We initialize the first `order` values by lower order multistep solvers.
1020
+ Given a fixed NFE == `steps`, the sampling procedure is:
1021
+ Denote K = steps.
1022
+ - If `order` == 1:
1023
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
1024
+ - If `order` == 2:
1025
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1026
+ - If `order` == 3:
1027
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1028
+ - 'singlestep_fixed':
1029
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1030
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1031
+ - 'adaptive':
1032
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1033
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1034
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1035
+ (NFE) and the sample quality.
1036
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1037
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1038
+
1039
+ =====================================================
1040
+
1041
+ Some advices for choosing the algorithm:
1042
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1043
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
1044
+ e.g.
1045
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
1046
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1047
+ skip_type='time_uniform', method='singlestep')
1048
+ - For **guided sampling with large guidance scale** by DPMs:
1049
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
1050
+ e.g.
1051
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
1052
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1053
+ skip_type='time_uniform', method='multistep')
1054
+
1055
+ We support three types of `skip_type`:
1056
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1057
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1058
+ - 'time_quadratic': quadratic time for the time steps.
1059
+
1060
+ =====================================================
1061
+ Args:
1062
+ x: A pytorch tensor. The initial value at time `t_start`
1063
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1064
+ steps: A `int`. The total number of function evaluations (NFE).
1065
+ t_start: A `float`. The starting time of the sampling.
1066
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1067
+ t_end: A `float`. The ending time of the sampling.
1068
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1069
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1070
+ For discrete-time DPMs:
1071
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1072
+ For continuous-time DPMs:
1073
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1074
+ order: A `int`. The order of DPM-Solver.
1075
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1076
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1077
+ denoise: A `bool`. Whether to denoise at the final step. Default is False.
1078
+ If `denoise` is True, the total NFE is (`steps` + 1).
1079
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1080
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1081
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1082
+ Returns:
1083
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1084
+
1085
+ """
1086
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1087
+ t_T = self.noise_schedule.T if t_start is None else t_start
1088
+ device = x.device
1089
+ if method == 'adaptive':
1090
+ with torch.no_grad():
1091
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1092
+ solver_type=solver_type)
1093
+ elif method == 'multistep':
1094
+ assert steps >= order
1095
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1096
+ assert timesteps.shape[0] - 1 == steps
1097
+ with torch.no_grad():
1098
+ vec_t = timesteps[0].expand((x.shape[0]))
1099
+ model_prev_list = [self.model_fn(x, vec_t)]
1100
+ t_prev_list = [vec_t]
1101
+ # Init the first `order` values by lower order multistep DPM-Solver.
1102
+ for init_order in range(1, order):
1103
+ vec_t = timesteps[init_order].expand(x.shape[0])
1104
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1105
+ solver_type=solver_type)
1106
+ model_prev_list.append(self.model_fn(x, vec_t))
1107
+ t_prev_list.append(vec_t)
1108
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1109
+ for step in range(order, steps + 1):
1110
+ vec_t = timesteps[step].expand(x.shape[0])
1111
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order,
1112
+ solver_type=solver_type)
1113
+ for i in range(order - 1):
1114
+ t_prev_list[i] = t_prev_list[i + 1]
1115
+ model_prev_list[i] = model_prev_list[i + 1]
1116
+ t_prev_list[-1] = vec_t
1117
+ # We do not need to evaluate the final model value.
1118
+ if step < steps:
1119
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1120
+ elif method in ['singlestep', 'singlestep_fixed']:
1121
+ if method == 'singlestep':
1122
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1123
+ skip_type=skip_type,
1124
+ t_T=t_T, t_0=t_0,
1125
+ device=device)
1126
+ elif method == 'singlestep_fixed':
1127
+ K = steps // order
1128
+ orders = [order, ] * K
1129
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1130
+ for i, order in enumerate(orders):
1131
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1132
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1133
+ N=order, device=device)
1134
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1135
+ vec_s, vec_t = t_T_inner.repeat(x.shape[0]), t_0_inner.repeat(x.shape[0])
1136
+ h = lambda_inner[-1] - lambda_inner[0]
1137
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1138
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1139
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1140
+ if denoise:
1141
+ x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1142
+ return x
1143
+
1144
+
1145
+ #############################################################
1146
+ # other utility functions
1147
+ #############################################################
1148
+
1149
+ def interpolate_fn(x, xp, yp):
1150
+ """
1151
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1152
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1153
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1154
+
1155
+ Args:
1156
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1157
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1158
+ yp: PyTorch tensor with shape [C, K].
1159
+ Returns:
1160
+ The function values f(x), with shape [N, C].
1161
+ """
1162
+ N, K = x.shape[0], xp.shape[1]
1163
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1164
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1165
+ x_idx = torch.argmin(x_indices, dim=2)
1166
+ cand_start_idx = x_idx - 1
1167
+ start_idx = torch.where(
1168
+ torch.eq(x_idx, 0),
1169
+ torch.tensor(1, device=x.device),
1170
+ torch.where(
1171
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1172
+ ),
1173
+ )
1174
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1175
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1176
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1177
+ start_idx2 = torch.where(
1178
+ torch.eq(x_idx, 0),
1179
+ torch.tensor(0, device=x.device),
1180
+ torch.where(
1181
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1182
+ ),
1183
+ )
1184
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1185
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1186
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1187
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1188
+ return cand
1189
+
1190
+
1191
+ def expand_dims(v, dims):
1192
+ """
1193
+ Expand the tensor `v` to the dim `dims`.
1194
+
1195
+ Args:
1196
+ `v`: a PyTorch tensor with shape [N].
1197
+ `dim`: a `int`.
1198
+ Returns:
1199
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1200
+ """
1201
+ return v[(...,) + (None,) * (dims - 1)]
diffusion/how to export onnx.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ - Open [onnx_export](onnx_export.py)
2
+ - project_name = "dddsp" change "project_name" to your project name
3
+ - model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
4
+ - Run
diffusion/infer_gt_mel.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from diffusion.unit2mel import load_model_vocoder
5
+
6
+
7
+ class DiffGtMel:
8
+ def __init__(self, project_path=None, device=None):
9
+ self.project_path = project_path
10
+ if device is not None:
11
+ self.device = device
12
+ else:
13
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
14
+ self.model = None
15
+ self.vocoder = None
16
+ self.args = None
17
+
18
+ def flush_model(self, project_path, ddsp_config=None):
19
+ if (self.model is None) or (project_path != self.project_path):
20
+ model, vocoder, args = load_model_vocoder(project_path, device=self.device)
21
+ if self.check_args(ddsp_config, args):
22
+ self.model = model
23
+ self.vocoder = vocoder
24
+ self.args = args
25
+
26
+ def check_args(self, args1, args2):
27
+ if args1.data.block_size != args2.data.block_size:
28
+ raise ValueError("DDSP与DIFF模型的block_size不一致")
29
+ if args1.data.sampling_rate != args2.data.sampling_rate:
30
+ raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
31
+ if args1.data.encoder != args2.data.encoder:
32
+ raise ValueError("DDSP与DIFF模型的encoder不一致")
33
+ return True
34
+
35
+ def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
36
+ spk_mix_dict=None, start_frame=0):
37
+ input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
38
+ out_mel = self.model(
39
+ hubert,
40
+ f0,
41
+ volume,
42
+ spk_id=spk_id,
43
+ spk_mix_dict=spk_mix_dict,
44
+ gt_spec=input_mel,
45
+ infer=True,
46
+ infer_speedup=acc,
47
+ method=method,
48
+ k_step=k_step,
49
+ use_tqdm=False)
50
+ if start_frame > 0:
51
+ out_mel = out_mel[:, start_frame:, :]
52
+ f0 = f0[:, start_frame:, :]
53
+ output = self.vocoder.infer(out_mel, f0)
54
+ if start_frame > 0:
55
+ output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
56
+ return output
57
+
58
+ def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
59
+ use_silence=False, spk_mix_dict=None):
60
+ start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
61
+ if use_silence:
62
+ audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
63
+ f0 = f0[:, start_frame:, :]
64
+ hubert = hubert[:, start_frame:, :]
65
+ volume = volume[:, start_frame:, :]
66
+ _start_frame = 0
67
+ else:
68
+ _start_frame = start_frame
69
+ audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
70
+ method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
71
+ if use_silence:
72
+ if start_frame > 0:
73
+ audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
74
+ return audio
diffusion/logger/__init__.py ADDED
File without changes
diffusion/logger/saver.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ author: wayn391@mastertones
3
+ '''
4
+
5
+ import os
6
+ import json
7
+ import time
8
+ import yaml
9
+ import datetime
10
+ import torch
11
+ import matplotlib.pyplot as plt
12
+ from . import utils
13
+ from torch.utils.tensorboard import SummaryWriter
14
+
15
+ class Saver(object):
16
+ def __init__(
17
+ self,
18
+ args,
19
+ initial_global_step=-1):
20
+
21
+ self.expdir = args.env.expdir
22
+ self.sample_rate = args.data.sampling_rate
23
+
24
+ # cold start
25
+ self.global_step = initial_global_step
26
+ self.init_time = time.time()
27
+ self.last_time = time.time()
28
+
29
+ # makedirs
30
+ os.makedirs(self.expdir, exist_ok=True)
31
+
32
+ # path
33
+ self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
34
+
35
+ # ckpt
36
+ os.makedirs(self.expdir, exist_ok=True)
37
+
38
+ # writer
39
+ self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
40
+
41
+ # save config
42
+ path_config = os.path.join(self.expdir, 'config.yaml')
43
+ with open(path_config, "w") as out_config:
44
+ yaml.dump(dict(args), out_config)
45
+
46
+
47
+ def log_info(self, msg):
48
+ '''log method'''
49
+ if isinstance(msg, dict):
50
+ msg_list = []
51
+ for k, v in msg.items():
52
+ tmp_str = ''
53
+ if isinstance(v, int):
54
+ tmp_str = '{}: {:,}'.format(k, v)
55
+ else:
56
+ tmp_str = '{}: {}'.format(k, v)
57
+
58
+ msg_list.append(tmp_str)
59
+ msg_str = '\n'.join(msg_list)
60
+ else:
61
+ msg_str = msg
62
+
63
+ # dsplay
64
+ print(msg_str)
65
+
66
+ # save
67
+ with open(self.path_log_info, 'a') as fp:
68
+ fp.write(msg_str+'\n')
69
+
70
+ def log_value(self, dict):
71
+ for k, v in dict.items():
72
+ self.writer.add_scalar(k, v, self.global_step)
73
+
74
+ def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
75
+ spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
76
+ spec = spec_cat[0]
77
+ if isinstance(spec, torch.Tensor):
78
+ spec = spec.cpu().numpy()
79
+ fig = plt.figure(figsize=(12, 9))
80
+ plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
81
+ plt.tight_layout()
82
+ self.writer.add_figure(name, fig, self.global_step)
83
+
84
+ def log_audio(self, dict):
85
+ for k, v in dict.items():
86
+ self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
87
+
88
+ def get_interval_time(self, update=True):
89
+ cur_time = time.time()
90
+ time_interval = cur_time - self.last_time
91
+ if update:
92
+ self.last_time = cur_time
93
+ return time_interval
94
+
95
+ def get_total_time(self, to_str=True):
96
+ total_time = time.time() - self.init_time
97
+ if to_str:
98
+ total_time = str(datetime.timedelta(
99
+ seconds=total_time))[:-5]
100
+ return total_time
101
+
102
+ def save_model(
103
+ self,
104
+ model,
105
+ optimizer,
106
+ name='model',
107
+ postfix='',
108
+ to_json=False):
109
+ # path
110
+ if postfix:
111
+ postfix = '_' + postfix
112
+ path_pt = os.path.join(
113
+ self.expdir , name+postfix+'.pt')
114
+
115
+ # check
116
+ print(' [*] model checkpoint saved: {}'.format(path_pt))
117
+
118
+ # save
119
+ if optimizer is not None:
120
+ torch.save({
121
+ 'global_step': self.global_step,
122
+ 'model': model.state_dict(),
123
+ 'optimizer': optimizer.state_dict()}, path_pt)
124
+ else:
125
+ torch.save({
126
+ 'global_step': self.global_step,
127
+ 'model': model.state_dict()}, path_pt)
128
+
129
+ # to json
130
+ if to_json:
131
+ path_json = os.path.join(
132
+ self.expdir , name+'.json')
133
+ utils.to_json(path_params, path_json)
134
+
135
+ def delete_model(self, name='model', postfix=''):
136
+ # path
137
+ if postfix:
138
+ postfix = '_' + postfix
139
+ path_pt = os.path.join(
140
+ self.expdir , name+postfix+'.pt')
141
+
142
+ # delete
143
+ if os.path.exists(path_pt):
144
+ os.remove(path_pt)
145
+ print(' [*] model checkpoint deleted: {}'.format(path_pt))
146
+
147
+ def global_step_increment(self):
148
+ self.global_step += 1
149
+
150
+
diffusion/logger/utils.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import json
4
+ import pickle
5
+ import torch
6
+
7
+ def traverse_dir(
8
+ root_dir,
9
+ extensions,
10
+ amount=None,
11
+ str_include=None,
12
+ str_exclude=None,
13
+ is_pure=False,
14
+ is_sort=False,
15
+ is_ext=True):
16
+
17
+ file_list = []
18
+ cnt = 0
19
+ for root, _, files in os.walk(root_dir):
20
+ for file in files:
21
+ if any([file.endswith(f".{ext}") for ext in extensions]):
22
+ # path
23
+ mix_path = os.path.join(root, file)
24
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
25
+
26
+ # amount
27
+ if (amount is not None) and (cnt == amount):
28
+ if is_sort:
29
+ file_list.sort()
30
+ return file_list
31
+
32
+ # check string
33
+ if (str_include is not None) and (str_include not in pure_path):
34
+ continue
35
+ if (str_exclude is not None) and (str_exclude in pure_path):
36
+ continue
37
+
38
+ if not is_ext:
39
+ ext = pure_path.split('.')[-1]
40
+ pure_path = pure_path[:-(len(ext)+1)]
41
+ file_list.append(pure_path)
42
+ cnt += 1
43
+ if is_sort:
44
+ file_list.sort()
45
+ return file_list
46
+
47
+
48
+
49
+ class DotDict(dict):
50
+ def __getattr__(*args):
51
+ val = dict.get(*args)
52
+ return DotDict(val) if type(val) is dict else val
53
+
54
+ __setattr__ = dict.__setitem__
55
+ __delattr__ = dict.__delitem__
56
+
57
+
58
+ def get_network_paras_amount(model_dict):
59
+ info = dict()
60
+ for model_name, model in model_dict.items():
61
+ # all_params = sum(p.numel() for p in model.parameters())
62
+ trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
63
+
64
+ info[model_name] = trainable_params
65
+ return info
66
+
67
+
68
+ def load_config(path_config):
69
+ with open(path_config, "r") as config:
70
+ args = yaml.safe_load(config)
71
+ args = DotDict(args)
72
+ # print(args)
73
+ return args
74
+
75
+ def save_config(path_config,config):
76
+ config = dict(config)
77
+ with open(path_config, "w") as f:
78
+ yaml.dump(config, f)
79
+
80
+ def to_json(path_params, path_json):
81
+ params = torch.load(path_params, map_location=torch.device('cpu'))
82
+ raw_state_dict = {}
83
+ for k, v in params.items():
84
+ val = v.flatten().numpy().tolist()
85
+ raw_state_dict[k] = val
86
+
87
+ with open(path_json, 'w') as outfile:
88
+ json.dump(raw_state_dict, outfile,indent= "\t")
89
+
90
+
91
+ def convert_tensor_to_numpy(tensor, is_squeeze=True):
92
+ if is_squeeze:
93
+ tensor = tensor.squeeze()
94
+ if tensor.requires_grad:
95
+ tensor = tensor.detach()
96
+ if tensor.is_cuda:
97
+ tensor = tensor.cpu()
98
+ return tensor.numpy()
99
+
100
+
101
+ def load_model(
102
+ expdir,
103
+ model,
104
+ optimizer,
105
+ name='model',
106
+ postfix='',
107
+ device='cpu'):
108
+ if postfix == '':
109
+ postfix = '_' + postfix
110
+ path = os.path.join(expdir, name+postfix)
111
+ path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
112
+ global_step = 0
113
+ if len(path_pt) > 0:
114
+ steps = [s[len(path):] for s in path_pt]
115
+ maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
116
+ if maxstep >= 0:
117
+ path_pt = path+str(maxstep)+'.pt'
118
+ else:
119
+ path_pt = path+'best.pt'
120
+ print(' [*] restoring model from', path_pt)
121
+ ckpt = torch.load(path_pt, map_location=torch.device(device))
122
+ global_step = ckpt['global_step']
123
+ model.load_state_dict(ckpt['model'], strict=False)
124
+ if ckpt.get('optimizer') != None:
125
+ optimizer.load_state_dict(ckpt['optimizer'])
126
+ return global_step, model, optimizer
diffusion/onnx_export.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusion_onnx import GaussianDiffusion
2
+ import os
3
+ import yaml
4
+ import torch
5
+ import torch.nn as nn
6
+ import numpy as np
7
+ from wavenet import WaveNet
8
+ import torch.nn.functional as F
9
+ import diffusion
10
+
11
+ class DotDict(dict):
12
+ def __getattr__(*args):
13
+ val = dict.get(*args)
14
+ return DotDict(val) if type(val) is dict else val
15
+
16
+ __setattr__ = dict.__setitem__
17
+ __delattr__ = dict.__delitem__
18
+
19
+
20
+ def load_model_vocoder(
21
+ model_path,
22
+ device='cpu'):
23
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
24
+ with open(config_file, "r") as config:
25
+ args = yaml.safe_load(config)
26
+ args = DotDict(args)
27
+
28
+ # load model
29
+ model = Unit2Mel(
30
+ args.data.encoder_out_channels,
31
+ args.model.n_spk,
32
+ args.model.use_pitch_aug,
33
+ 128,
34
+ args.model.n_layers,
35
+ args.model.n_chans,
36
+ args.model.n_hidden)
37
+
38
+ print(' [Loading] ' + model_path)
39
+ ckpt = torch.load(model_path, map_location=torch.device(device))
40
+ model.to(device)
41
+ model.load_state_dict(ckpt['model'])
42
+ model.eval()
43
+ return model, args
44
+
45
+
46
+ class Unit2Mel(nn.Module):
47
+ def __init__(
48
+ self,
49
+ input_channel,
50
+ n_spk,
51
+ use_pitch_aug=False,
52
+ out_dims=128,
53
+ n_layers=20,
54
+ n_chans=384,
55
+ n_hidden=256):
56
+ super().__init__()
57
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
58
+ self.f0_embed = nn.Linear(1, n_hidden)
59
+ self.volume_embed = nn.Linear(1, n_hidden)
60
+ if use_pitch_aug:
61
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
62
+ else:
63
+ self.aug_shift_embed = None
64
+ self.n_spk = n_spk
65
+ if n_spk is not None and n_spk > 1:
66
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
67
+
68
+ # diffusion
69
+ self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
70
+ self.hidden_size = n_hidden
71
+ self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
72
+
73
+
74
+
75
+ def forward(self, units, mel2ph, f0, volume, g = None):
76
+
77
+ '''
78
+ input:
79
+ B x n_frames x n_unit
80
+ return:
81
+ dict of B x n_frames x feat
82
+ '''
83
+
84
+ decoder_inp = F.pad(units, [0, 0, 1, 0])
85
+ mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
86
+ units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
87
+
88
+ x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
89
+
90
+ if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
91
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
92
+ g = g * self.speaker_map # [N, S, B, 1, H]
93
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
94
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
95
+ x = x.transpose(1, 2) + g
96
+ return x
97
+ else:
98
+ return x.transpose(1, 2)
99
+
100
+
101
+ def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
102
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
103
+
104
+ '''
105
+ input:
106
+ B x n_frames x n_unit
107
+ return:
108
+ dict of B x n_frames x feat
109
+ '''
110
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
111
+ if self.n_spk is not None and self.n_spk > 1:
112
+ if spk_mix_dict is not None:
113
+ spk_embed_mix = torch.zeros((1,1,self.hidden_size))
114
+ for k, v in spk_mix_dict.items():
115
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
116
+ spk_embeddd = self.spk_embed(spk_id_torch)
117
+ self.speaker_map[k] = spk_embeddd
118
+ spk_embed_mix = spk_embed_mix + v * spk_embeddd
119
+ x = x + spk_embed_mix
120
+ else:
121
+ x = x + self.spk_embed(spk_id - 1)
122
+ self.speaker_map = self.speaker_map.unsqueeze(0)
123
+ self.speaker_map = self.speaker_map.detach()
124
+ return x.transpose(1, 2)
125
+
126
+ def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
127
+ hubert_hidden_size = 768
128
+ n_frames = 100
129
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
130
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
131
+ f0 = torch.randn((1, n_frames))
132
+ volume = torch.randn((1, n_frames))
133
+ spk_mix = []
134
+ spks = {}
135
+ if self.n_spk is not None and self.n_spk > 1:
136
+ for i in range(self.n_spk):
137
+ spk_mix.append(1.0/float(self.n_spk))
138
+ spks.update({i:1.0/float(self.n_spk)})
139
+ spk_mix = torch.tensor(spk_mix)
140
+ spk_mix = spk_mix.repeat(n_frames, 1)
141
+ orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
142
+ outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
143
+ if export_encoder:
144
+ torch.onnx.export(
145
+ self,
146
+ (hubert, mel2ph, f0, volume, spk_mix),
147
+ f"{project_name}_encoder.onnx",
148
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
149
+ output_names=["mel_pred"],
150
+ dynamic_axes={
151
+ "hubert": [1],
152
+ "f0": [1],
153
+ "volume": [1],
154
+ "mel2ph": [1],
155
+ "spk_mix": [0],
156
+ },
157
+ opset_version=16
158
+ )
159
+
160
+ self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
161
+
162
+ def ExportOnnx(self, project_name=None):
163
+ hubert_hidden_size = 768
164
+ n_frames = 100
165
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
166
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
167
+ f0 = torch.randn((1, n_frames))
168
+ volume = torch.randn((1, n_frames))
169
+ spk_mix = []
170
+ spks = {}
171
+ if self.n_spk is not None and self.n_spk > 1:
172
+ for i in range(self.n_spk):
173
+ spk_mix.append(1.0/float(self.n_spk))
174
+ spks.update({i:1.0/float(self.n_spk)})
175
+ spk_mix = torch.tensor(spk_mix)
176
+ orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
177
+ outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
178
+
179
+ torch.onnx.export(
180
+ self,
181
+ (hubert, mel2ph, f0, volume, spk_mix),
182
+ f"{project_name}_encoder.onnx",
183
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
184
+ output_names=["mel_pred"],
185
+ dynamic_axes={
186
+ "hubert": [1],
187
+ "f0": [1],
188
+ "volume": [1],
189
+ "mel2ph": [1]
190
+ },
191
+ opset_version=16
192
+ )
193
+
194
+ condition = torch.randn(1,self.decoder.n_hidden,n_frames)
195
+ noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
196
+ pndm_speedup = torch.LongTensor([100])
197
+ K_steps = torch.LongTensor([1000])
198
+ self.decoder = torch.jit.script(self.decoder)
199
+ self.decoder(condition, noise, pndm_speedup, K_steps)
200
+
201
+ torch.onnx.export(
202
+ self.decoder,
203
+ (condition, noise, pndm_speedup, K_steps),
204
+ f"{project_name}_diffusion.onnx",
205
+ input_names=["condition", "noise", "pndm_speedup", "K_steps"],
206
+ output_names=["mel"],
207
+ dynamic_axes={
208
+ "condition": [2],
209
+ "noise": [3],
210
+ },
211
+ opset_version=16
212
+ )
213
+
214
+
215
+ if __name__ == "__main__":
216
+ project_name = "dddsp"
217
+ model_path = f'{project_name}/model_500000.pt'
218
+
219
+ model, _ = load_model_vocoder(model_path)
220
+
221
+ # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
222
+ model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
223
+
224
+ # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
225
+ # model.ExportOnnx(project_name)
226
+
diffusion/solver.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import numpy as np
4
+ import torch
5
+ import librosa
6
+ from diffusion.logger.saver import Saver
7
+ from diffusion.logger import utils
8
+ from torch import autocast
9
+ from torch.cuda.amp import GradScaler
10
+
11
+ def test(args, model, vocoder, loader_test, saver):
12
+ print(' [*] testing...')
13
+ model.eval()
14
+
15
+ # losses
16
+ test_loss = 0.
17
+
18
+ # intialization
19
+ num_batches = len(loader_test)
20
+ rtf_all = []
21
+
22
+ # run
23
+ with torch.no_grad():
24
+ for bidx, data in enumerate(loader_test):
25
+ fn = data['name'][0].split("/")[-1]
26
+ speaker = data['name'][0].split("/")[-2]
27
+ print('--------')
28
+ print('{}/{} - {}'.format(bidx, num_batches, fn))
29
+
30
+ # unpack data
31
+ for k in data.keys():
32
+ if not k.startswith('name'):
33
+ data[k] = data[k].to(args.device)
34
+ print('>>', data['name'][0])
35
+
36
+ # forward
37
+ st_time = time.time()
38
+ mel = model(
39
+ data['units'],
40
+ data['f0'],
41
+ data['volume'],
42
+ data['spk_id'],
43
+ gt_spec=None,
44
+ infer=True,
45
+ infer_speedup=args.infer.speedup,
46
+ method=args.infer.method)
47
+ signal = vocoder.infer(mel, data['f0'])
48
+ ed_time = time.time()
49
+
50
+ # RTF
51
+ run_time = ed_time - st_time
52
+ song_time = signal.shape[-1] / args.data.sampling_rate
53
+ rtf = run_time / song_time
54
+ print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
55
+ rtf_all.append(rtf)
56
+
57
+ # loss
58
+ for i in range(args.train.batch_size):
59
+ loss = model(
60
+ data['units'],
61
+ data['f0'],
62
+ data['volume'],
63
+ data['spk_id'],
64
+ gt_spec=data['mel'],
65
+ infer=False)
66
+ test_loss += loss.item()
67
+
68
+ # log mel
69
+ saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
70
+
71
+ # log audi
72
+ path_audio = data['name_ext'][0]
73
+ audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
74
+ if len(audio.shape) > 1:
75
+ audio = librosa.to_mono(audio)
76
+ audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
77
+ saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
78
+ # report
79
+ test_loss /= args.train.batch_size
80
+ test_loss /= num_batches
81
+
82
+ # check
83
+ print(' [test_loss] test_loss:', test_loss)
84
+ print(' Real Time Factor', np.mean(rtf_all))
85
+ return test_loss
86
+
87
+
88
+ def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
89
+ # saver
90
+ saver = Saver(args, initial_global_step=initial_global_step)
91
+
92
+ # model size
93
+ params_count = utils.get_network_paras_amount({'model': model})
94
+ saver.log_info('--- model size ---')
95
+ saver.log_info(params_count)
96
+
97
+ # run
98
+ num_batches = len(loader_train)
99
+ model.train()
100
+ saver.log_info('======= start training =======')
101
+ scaler = GradScaler()
102
+ if args.train.amp_dtype == 'fp32':
103
+ dtype = torch.float32
104
+ elif args.train.amp_dtype == 'fp16':
105
+ dtype = torch.float16
106
+ elif args.train.amp_dtype == 'bf16':
107
+ dtype = torch.bfloat16
108
+ else:
109
+ raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
110
+ saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
111
+ for epoch in range(args.train.epochs):
112
+ for batch_idx, data in enumerate(loader_train):
113
+ saver.global_step_increment()
114
+ optimizer.zero_grad()
115
+
116
+ # unpack data
117
+ for k in data.keys():
118
+ if not k.startswith('name'):
119
+ data[k] = data[k].to(args.device)
120
+
121
+ # forward
122
+ if dtype == torch.float32:
123
+ loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
124
+ aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
125
+ else:
126
+ with autocast(device_type=args.device, dtype=dtype):
127
+ loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
128
+ aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False)
129
+
130
+ # handle nan loss
131
+ if torch.isnan(loss):
132
+ raise ValueError(' [x] nan loss ')
133
+ else:
134
+ # backpropagate
135
+ if dtype == torch.float32:
136
+ loss.backward()
137
+ optimizer.step()
138
+ else:
139
+ scaler.scale(loss).backward()
140
+ scaler.step(optimizer)
141
+ scaler.update()
142
+ scheduler.step()
143
+
144
+ # log loss
145
+ if saver.global_step % args.train.interval_log == 0:
146
+ current_lr = optimizer.param_groups[0]['lr']
147
+ saver.log_info(
148
+ 'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
149
+ epoch,
150
+ batch_idx,
151
+ num_batches,
152
+ args.env.expdir,
153
+ args.train.interval_log/saver.get_interval_time(),
154
+ current_lr,
155
+ loss.item(),
156
+ saver.get_total_time(),
157
+ saver.global_step
158
+ )
159
+ )
160
+
161
+ saver.log_value({
162
+ 'train/loss': loss.item()
163
+ })
164
+
165
+ saver.log_value({
166
+ 'train/lr': current_lr
167
+ })
168
+
169
+ # validation
170
+ if saver.global_step % args.train.interval_val == 0:
171
+ optimizer_save = optimizer if args.train.save_opt else None
172
+
173
+ # save latest
174
+ saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
175
+ last_val_step = saver.global_step - args.train.interval_val
176
+ if last_val_step % args.train.interval_force_save != 0:
177
+ saver.delete_model(postfix=f'{last_val_step}')
178
+
179
+ # run testing set
180
+ test_loss = test(args, model, vocoder, loader_test, saver)
181
+
182
+ # log loss
183
+ saver.log_info(
184
+ ' --- <validation> --- \nloss: {:.3f}. '.format(
185
+ test_loss,
186
+ )
187
+ )
188
+
189
+ saver.log_value({
190
+ 'validation/loss': test_loss
191
+ })
192
+
193
+ model.train()
194
+
195
+
diffusion/unit2mel.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from .diffusion import GaussianDiffusion
7
+ from .wavenet import WaveNet
8
+ from .vocoder import Vocoder
9
+
10
+ class DotDict(dict):
11
+ def __getattr__(*args):
12
+ val = dict.get(*args)
13
+ return DotDict(val) if type(val) is dict else val
14
+
15
+ __setattr__ = dict.__setitem__
16
+ __delattr__ = dict.__delitem__
17
+
18
+
19
+ def load_model_vocoder(
20
+ model_path,
21
+ device='cpu',
22
+ config_path = None
23
+ ):
24
+ if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
25
+ else: config_file = config_path
26
+
27
+ with open(config_file, "r") as config:
28
+ args = yaml.safe_load(config)
29
+ args = DotDict(args)
30
+
31
+ # load vocoder
32
+ vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
33
+
34
+ # load model
35
+ model = Unit2Mel(
36
+ args.data.encoder_out_channels,
37
+ args.model.n_spk,
38
+ args.model.use_pitch_aug,
39
+ vocoder.dimension,
40
+ args.model.n_layers,
41
+ args.model.n_chans,
42
+ args.model.n_hidden)
43
+
44
+ print(' [Loading] ' + model_path)
45
+ ckpt = torch.load(model_path, map_location=torch.device(device))
46
+ model.to(device)
47
+ model.load_state_dict(ckpt['model'])
48
+ model.eval()
49
+ return model, vocoder, args
50
+
51
+
52
+ class Unit2Mel(nn.Module):
53
+ def __init__(
54
+ self,
55
+ input_channel,
56
+ n_spk,
57
+ use_pitch_aug=False,
58
+ out_dims=128,
59
+ n_layers=20,
60
+ n_chans=384,
61
+ n_hidden=256):
62
+ super().__init__()
63
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
64
+ self.f0_embed = nn.Linear(1, n_hidden)
65
+ self.volume_embed = nn.Linear(1, n_hidden)
66
+ if use_pitch_aug:
67
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
68
+ else:
69
+ self.aug_shift_embed = None
70
+ self.n_spk = n_spk
71
+ if n_spk is not None and n_spk > 1:
72
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
73
+
74
+ self.n_hidden = n_hidden
75
+ # diffusion
76
+ self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
77
+ self.input_channel = input_channel
78
+
79
+ def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
80
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
81
+
82
+ '''
83
+ input:
84
+ B x n_frames x n_unit
85
+ return:
86
+ dict of B x n_frames x feat
87
+ '''
88
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
89
+ if self.n_spk is not None and self.n_spk > 1:
90
+ if spk_mix_dict is not None:
91
+ spk_embed_mix = torch.zeros((1,1,self.hidden_size))
92
+ for k, v in spk_mix_dict.items():
93
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
94
+ spk_embeddd = self.spk_embed(spk_id_torch)
95
+ self.speaker_map[k] = spk_embeddd
96
+ spk_embed_mix = spk_embed_mix + v * spk_embeddd
97
+ x = x + spk_embed_mix
98
+ else:
99
+ x = x + self.spk_embed(spk_id - 1)
100
+ self.speaker_map = self.speaker_map.unsqueeze(0)
101
+ self.speaker_map = self.speaker_map.detach()
102
+ return x.transpose(1, 2)
103
+
104
+ def init_spkmix(self, n_spk):
105
+ self.speaker_map = torch.zeros((n_spk,1,1,self.n_hidden))
106
+ hubert_hidden_size = self.input_channel
107
+ n_frames = 10
108
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
109
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
110
+ f0 = torch.randn((1, n_frames))
111
+ volume = torch.randn((1, n_frames))
112
+ spks = {}
113
+ for i in range(n_spk):
114
+ spks.update({i:1.0/float(self.n_spk)})
115
+ orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
116
+
117
+ def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
118
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
119
+
120
+ '''
121
+ input:
122
+ B x n_frames x n_unit
123
+ return:
124
+ dict of B x n_frames x feat
125
+ '''
126
+
127
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
128
+ if self.n_spk is not None and self.n_spk > 1:
129
+ if spk_mix_dict is not None:
130
+ for k, v in spk_mix_dict.items():
131
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
132
+ x = x + v * self.spk_embed(spk_id_torch)
133
+ else:
134
+ if spk_id.shape[1] > 1:
135
+ g = spk_id.reshape((spk_id.shape[0], spk_id.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
136
+ g = g * self.speaker_map # [N, S, B, 1, H]
137
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
138
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
139
+ x = x + g
140
+ else:
141
+ x = x + self.spk_embed(spk_id)
142
+ if self.aug_shift_embed is not None and aug_shift is not None:
143
+ x = x + self.aug_shift_embed(aug_shift / 5)
144
+ x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
145
+
146
+ return x
147
+
diffusion/vocoder.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from vdecoder.nsf_hifigan.nvSTFT import STFT
3
+ from vdecoder.nsf_hifigan.models import load_model,load_config
4
+ from torchaudio.transforms import Resample
5
+
6
+
7
+ class Vocoder:
8
+ def __init__(self, vocoder_type, vocoder_ckpt, device = None):
9
+ if device is None:
10
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
11
+ self.device = device
12
+
13
+ if vocoder_type == 'nsf-hifigan':
14
+ self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
15
+ elif vocoder_type == 'nsf-hifigan-log10':
16
+ self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
17
+ else:
18
+ raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
19
+
20
+ self.resample_kernel = {}
21
+ self.vocoder_sample_rate = self.vocoder.sample_rate()
22
+ self.vocoder_hop_size = self.vocoder.hop_size()
23
+ self.dimension = self.vocoder.dimension()
24
+
25
+ def extract(self, audio, sample_rate, keyshift=0):
26
+
27
+ # resample
28
+ if sample_rate == self.vocoder_sample_rate:
29
+ audio_res = audio
30
+ else:
31
+ key_str = str(sample_rate)
32
+ if key_str not in self.resample_kernel:
33
+ self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
34
+ audio_res = self.resample_kernel[key_str](audio)
35
+
36
+ # extract
37
+ mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
38
+ return mel
39
+
40
+ def infer(self, mel, f0):
41
+ f0 = f0[:,:mel.size(1),0] # B, n_frames
42
+ audio = self.vocoder(mel, f0)
43
+ return audio
44
+
45
+
46
+ class NsfHifiGAN(torch.nn.Module):
47
+ def __init__(self, model_path, device=None):
48
+ super().__init__()
49
+ if device is None:
50
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
51
+ self.device = device
52
+ self.model_path = model_path
53
+ self.model = None
54
+ self.h = load_config(model_path)
55
+ self.stft = STFT(
56
+ self.h.sampling_rate,
57
+ self.h.num_mels,
58
+ self.h.n_fft,
59
+ self.h.win_size,
60
+ self.h.hop_size,
61
+ self.h.fmin,
62
+ self.h.fmax)
63
+
64
+ def sample_rate(self):
65
+ return self.h.sampling_rate
66
+
67
+ def hop_size(self):
68
+ return self.h.hop_size
69
+
70
+ def dimension(self):
71
+ return self.h.num_mels
72
+
73
+ def extract(self, audio, keyshift=0):
74
+ mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
75
+ return mel
76
+
77
+ def forward(self, mel, f0):
78
+ if self.model is None:
79
+ print('| Load HifiGAN: ', self.model_path)
80
+ self.model, self.h = load_model(self.model_path, device=self.device)
81
+ with torch.no_grad():
82
+ c = mel.transpose(1, 2)
83
+ audio = self.model(c, f0)
84
+ return audio
85
+
86
+ class NsfHifiGANLog10(NsfHifiGAN):
87
+ def forward(self, mel, f0):
88
+ if self.model is None:
89
+ print('| Load HifiGAN: ', self.model_path)
90
+ self.model, self.h = load_model(self.model_path, device=self.device)
91
+ with torch.no_grad():
92
+ c = 0.434294 * mel.transpose(1, 2)
93
+ audio = self.model(c, f0)
94
+ return audio
diffusion/wavenet.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from math import sqrt
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.nn import Mish
8
+
9
+
10
+ class Conv1d(torch.nn.Conv1d):
11
+ def __init__(self, *args, **kwargs):
12
+ super().__init__(*args, **kwargs)
13
+ nn.init.kaiming_normal_(self.weight)
14
+
15
+
16
+ class SinusoidalPosEmb(nn.Module):
17
+ def __init__(self, dim):
18
+ super().__init__()
19
+ self.dim = dim
20
+
21
+ def forward(self, x):
22
+ device = x.device
23
+ half_dim = self.dim // 2
24
+ emb = math.log(10000) / (half_dim - 1)
25
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
26
+ emb = x[:, None] * emb[None, :]
27
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
28
+ return emb
29
+
30
+
31
+ class ResidualBlock(nn.Module):
32
+ def __init__(self, encoder_hidden, residual_channels, dilation):
33
+ super().__init__()
34
+ self.residual_channels = residual_channels
35
+ self.dilated_conv = nn.Conv1d(
36
+ residual_channels,
37
+ 2 * residual_channels,
38
+ kernel_size=3,
39
+ padding=dilation,
40
+ dilation=dilation
41
+ )
42
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
43
+ self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
44
+ self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
45
+
46
+ def forward(self, x, conditioner, diffusion_step):
47
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
48
+ conditioner = self.conditioner_projection(conditioner)
49
+ y = x + diffusion_step
50
+
51
+ y = self.dilated_conv(y) + conditioner
52
+
53
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
54
+ gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
55
+ y = torch.sigmoid(gate) * torch.tanh(filter)
56
+
57
+ y = self.output_projection(y)
58
+
59
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
60
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
61
+ return (x + residual) / math.sqrt(2.0), skip
62
+
63
+
64
+ class WaveNet(nn.Module):
65
+ def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
66
+ super().__init__()
67
+ self.input_projection = Conv1d(in_dims, n_chans, 1)
68
+ self.diffusion_embedding = SinusoidalPosEmb(n_chans)
69
+ self.mlp = nn.Sequential(
70
+ nn.Linear(n_chans, n_chans * 4),
71
+ Mish(),
72
+ nn.Linear(n_chans * 4, n_chans)
73
+ )
74
+ self.residual_layers = nn.ModuleList([
75
+ ResidualBlock(
76
+ encoder_hidden=n_hidden,
77
+ residual_channels=n_chans,
78
+ dilation=1
79
+ )
80
+ for i in range(n_layers)
81
+ ])
82
+ self.skip_projection = Conv1d(n_chans, n_chans, 1)
83
+ self.output_projection = Conv1d(n_chans, in_dims, 1)
84
+ nn.init.zeros_(self.output_projection.weight)
85
+
86
+ def forward(self, spec, diffusion_step, cond):
87
+ """
88
+ :param spec: [B, 1, M, T]
89
+ :param diffusion_step: [B, 1]
90
+ :param cond: [B, M, T]
91
+ :return:
92
+ """
93
+ x = spec.squeeze(1)
94
+ x = self.input_projection(x) # [B, residual_channel, T]
95
+
96
+ x = F.relu(x)
97
+ diffusion_step = self.diffusion_embedding(diffusion_step)
98
+ diffusion_step = self.mlp(diffusion_step)
99
+ skip = []
100
+ for layer in self.residual_layers:
101
+ x, skip_connection = layer(x, cond, diffusion_step)
102
+ skip.append(skip_connection)
103
+
104
+ x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
105
+ x = self.skip_projection(x)
106
+ x = F.relu(x)
107
+ x = self.output_projection(x) # [B, mel_bins, T]
108
+ return x[:, None, :, :]