updated text underneath headers of tabs
Browse files
app.py
CHANGED
@@ -98,7 +98,7 @@ if active_tab == "Nearest neighbours":
|
|
98 |
|
99 |
with st.container():
|
100 |
st.markdown("## Nearest Neighbours")
|
101 |
-
st.markdown('
|
102 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
103 |
if len(target_word) > 0:
|
104 |
target_word = target_word[0]
|
@@ -160,7 +160,7 @@ elif active_tab == "Cosine similarity":
|
|
160 |
eligible_models_1 = []
|
161 |
eligible_models_2 = []
|
162 |
st.markdown("## Cosine similarity")
|
163 |
-
st.markdown('
|
164 |
col1, col2 = st.columns(2)
|
165 |
col3, col4 = st.columns(2)
|
166 |
with col1:
|
@@ -194,7 +194,7 @@ elif active_tab == "Cosine similarity":
|
|
194 |
# 3D graph tab
|
195 |
elif active_tab == "3D graph":
|
196 |
st.markdown("## 3D graph")
|
197 |
-
st.markdown('
|
198 |
|
199 |
col1, col2 = st.columns(2)
|
200 |
|
@@ -237,7 +237,7 @@ elif active_tab == "Dictionary":
|
|
237 |
|
238 |
with st.container():
|
239 |
st.markdown('## Dictionary')
|
240 |
-
st.markdown('
|
241 |
|
242 |
|
243 |
all_lemmas = load_all_lemmas()
|
|
|
98 |
|
99 |
with st.container():
|
100 |
st.markdown("## Nearest Neighbours")
|
101 |
+
st.markdown('Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
|
102 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
103 |
if len(target_word) > 0:
|
104 |
target_word = target_word[0]
|
|
|
160 |
eligible_models_1 = []
|
161 |
eligible_models_2 = []
|
162 |
st.markdown("## Cosine similarity")
|
163 |
+
st.markdown('Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
|
164 |
col1, col2 = st.columns(2)
|
165 |
col3, col4 = st.columns(2)
|
166 |
with col1:
|
|
|
194 |
# 3D graph tab
|
195 |
elif active_tab == "3D graph":
|
196 |
st.markdown("## 3D graph")
|
197 |
+
st.markdown('Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
|
198 |
|
199 |
col1, col2 = st.columns(2)
|
200 |
|
|
|
237 |
|
238 |
with st.container():
|
239 |
st.markdown('## Dictionary')
|
240 |
+
st.markdown('Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
|
241 |
|
242 |
|
243 |
all_lemmas = load_all_lemmas()
|