Mark7549 commited on
Commit
ca2c3e1
·
1 Parent(s): a1d0fa4

updated text underneath headers of tabs

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -98,7 +98,7 @@ if active_tab == "Nearest neighbours":
98
 
99
  with st.container():
100
  st.markdown("## Nearest Neighbours")
101
- st.markdown('###### Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
102
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
103
  if len(target_word) > 0:
104
  target_word = target_word[0]
@@ -160,7 +160,7 @@ elif active_tab == "Cosine similarity":
160
  eligible_models_1 = []
161
  eligible_models_2 = []
162
  st.markdown("## Cosine similarity")
163
- st.markdown('###### Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
164
  col1, col2 = st.columns(2)
165
  col3, col4 = st.columns(2)
166
  with col1:
@@ -194,7 +194,7 @@ elif active_tab == "Cosine similarity":
194
  # 3D graph tab
195
  elif active_tab == "3D graph":
196
  st.markdown("## 3D graph")
197
- st.markdown('###### Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
198
 
199
  col1, col2 = st.columns(2)
200
 
@@ -237,7 +237,7 @@ elif active_tab == "Dictionary":
237
 
238
  with st.container():
239
  st.markdown('## Dictionary')
240
- st.markdown('###### Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
241
 
242
 
243
  all_lemmas = load_all_lemmas()
 
98
 
99
  with st.container():
100
  st.markdown("## Nearest Neighbours")
101
+ st.markdown('Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
102
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
103
  if len(target_word) > 0:
104
  target_word = target_word[0]
 
160
  eligible_models_1 = []
161
  eligible_models_2 = []
162
  st.markdown("## Cosine similarity")
163
+ st.markdown('Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
164
  col1, col2 = st.columns(2)
165
  col3, col4 = st.columns(2)
166
  with col1:
 
194
  # 3D graph tab
195
  elif active_tab == "3D graph":
196
  st.markdown("## 3D graph")
197
+ st.markdown('Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
198
 
199
  col1, col2 = st.columns(2)
200
 
 
237
 
238
  with st.container():
239
  st.markdown('## Dictionary')
240
+ st.markdown('Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
241
 
242
 
243
  all_lemmas = load_all_lemmas()