Removed vector_graph.py, functions weren't used anymore
Browse files- app.py +0 -1
- vector_graph.py +0 -72
app.py
CHANGED
@@ -3,7 +3,6 @@ from streamlit_option_menu import option_menu
|
|
3 |
from word2vec import *
|
4 |
import pandas as pd
|
5 |
from autocomplete import *
|
6 |
-
from vector_graph import *
|
7 |
from plots import *
|
8 |
from lsj_dict import *
|
9 |
import json
|
|
|
3 |
from word2vec import *
|
4 |
import pandas as pd
|
5 |
from autocomplete import *
|
|
|
6 |
from plots import *
|
7 |
from lsj_dict import *
|
8 |
import json
|
vector_graph.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
from word2vec import *
|
2 |
-
import numpy as np
|
3 |
-
from sklearn.decomposition import PCA
|
4 |
-
from sklearn.preprocessing import StandardScaler
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
def create_3d_vectors(word, time_slice, nearest_neighbours_vectors):
|
10 |
-
"""
|
11 |
-
Turn word vectors into 3D vectors
|
12 |
-
"""
|
13 |
-
model = load_word2vec_model(f'models/{time_slice}.model')
|
14 |
-
|
15 |
-
# Compress all vectors to 3D
|
16 |
-
model_df = pd.DataFrame(model.wv.vectors)
|
17 |
-
pca_vectors = PCA(n_components=3)
|
18 |
-
pca_model = pca_vectors.fit_transform(model_df)
|
19 |
-
pca_model_df = pd.DataFrame(
|
20 |
-
data = pca_model,
|
21 |
-
columns = ['x', 'y', 'z']
|
22 |
-
)
|
23 |
-
pca_model_df.insert(0, 'word', model.wv.index_to_key)
|
24 |
-
|
25 |
-
return pca_model_df
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
def create_3d_models(time_slice):
|
31 |
-
"""
|
32 |
-
Create 3D models for each time slice
|
33 |
-
"""
|
34 |
-
time_slice_model = convert_time_name_to_model(time_slice)
|
35 |
-
model = load_word2vec_model(f'models/{time_slice_model}.model')
|
36 |
-
|
37 |
-
# Compress all vectors to 3D
|
38 |
-
model_df = pd.DataFrame(model.wv.vectors)
|
39 |
-
pca_vectors = PCA(n_components=3)
|
40 |
-
pca_model = pca_vectors.fit_transform(model_df)
|
41 |
-
pca_model_df = pd.DataFrame(
|
42 |
-
data = pca_model,
|
43 |
-
columns = ['x', 'y', 'z']
|
44 |
-
)
|
45 |
-
|
46 |
-
pca_model_df.insert(0, 'word', model.wv.index_to_key)
|
47 |
-
|
48 |
-
pca_model_df.to_csv(f'3d_models/{time_slice}_3d.csv', index=False)
|
49 |
-
return pca_model_df, pca_vectors
|
50 |
-
|
51 |
-
|
52 |
-
def nearest_neighbours_to_pca_vectors(word, time_slice, nearest_neighbours_vectors):
|
53 |
-
"""
|
54 |
-
Turn nearest neighbours into 3D vectors
|
55 |
-
"""
|
56 |
-
model_df = pd.read_csv(f'3d_models/{time_slice}_3d.csv')
|
57 |
-
|
58 |
-
new_data = []
|
59 |
-
|
60 |
-
# Get the word vector for the nearest neighbours
|
61 |
-
for neighbour in nearest_neighbours_vectors:
|
62 |
-
word = neighbour[0]
|
63 |
-
cosine_sim = neighbour[3]
|
64 |
-
vector_3d = model_df[model_df['word'] == word][['x', 'y', 'z']].values[0]
|
65 |
-
|
66 |
-
# Add word, cosine_sim and 3D vector to new data list
|
67 |
-
new_data.append({'word': word, 'cosine_sim': cosine_sim, '3d_vector': vector_3d})
|
68 |
-
|
69 |
-
# Convert the list of dictionaries to a DataFrame
|
70 |
-
new_df = pd.DataFrame(new_data)
|
71 |
-
|
72 |
-
return new_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|