File size: 3,684 Bytes
0d0f07a
 
 
14c3a4f
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
bdf0a5e
0d0f07a
 
14c3a4f
0d0f07a
fcfa1a6
 
 
 
14c3a4f
0d0f07a
 
 
14c3a4f
0d0f07a
14c3a4f
 
169869e
 
 
 
 
 
 
14c3a4f
169869e
 
14c3a4f
 
169869e
14c3a4f
 
169869e
 
 
 
 
fcfa1a6
 
 
 
 
14c3a4f
 
bdf0a5e
0d0f07a
 
bdf0a5e
 
0d0f07a
bdf0a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
from streamlit_option_menu import option_menu
from word2vec import *
import pandas as pd

st.set_page_config(page_title="Ancient Greek Word2Vec", layout="centered")

# Horizontal menu
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'], 
    menu_icon="cast", default_index=0, orientation="horizontal")

# Nearest neighbours tab
if active_tab == "Nearest neighbours":
    st.write("### TO DO: add description of function")
    col1, col2 = st.columns(2)
    with st.container():
        with col1:
            word = st.text_input("Enter a word", placeholder="πατήρ")
            
        with col2:
            time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
        
        models = st.multiselect(
            "Select models to search for neighbours",
            ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
            )
        n = st.slider("Number of neighbours", 1, 50, 15)
        
        nearest_neighbours_button = st.button("Find nearest neighbours")
        
        # If the button to calculate nearest neighbours is clicked
        if nearest_neighbours_button:
            
            # Rewrite timeslices to model names: Archaic -> archaic_cbow
            if time_slice == 'Hellenistic':
                time_slice = 'hellen'
            elif time_slice == 'Early Roman':
                time_slice = 'early_roman'
            elif time_slice == 'Late Roman':
                time_slice = 'late_roman'
            
            time_slice = time_slice.lower() + "_cbow"
            
            
            
            # Check if all fields are filled in
            if validate_nearest_neighbours(word, time_slice, n, models) == False:
                st.error('Please fill in all fields')
            else:
                # Rewrite models to list of all loaded models
                models = load_selected_models(models)
                
                nearest_neighbours = get_nearest_neighbours(word, time_slice, n, models)
                
                df = pd.DataFrame(
                    nearest_neighbours,
                    columns=["Word", "Time slice", "Similarity"],
                    index = range(1, len(nearest_neighbours) + 1)
                )
                st.table(df)
                
   
# Cosine similarity tab
elif active_tab == "Cosine similarity":
    col1, col2 = st.columns(2)
    col3, col4 = st.columns(2)
    with st.container():
        with col1:
            word_1 = st.text_input("Enter a word", placeholder="πατήρ")
            
        with col2:
            time_slice_1 = st.selectbox("Time slice word 1", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])

    with st.container():
        with col3:
            word_2 = st.text_input("Enter a word", placeholder="μήτηρ")
            
        with col4:
            time_slice_2 = st.selectbox("Time slice word 2", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
    
    # Create button for calculating cosine similarity
    cosine_similarity_button = st.button("Calculate cosine similarity")
    
    # If the button is clicked, execute calculation
    if cosine_similarity_button:
        cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
        st.write(cosine_simularity_score)

# 3D graph tab
elif active_tab == "3D graph":
    with st.container():
        st.write("3D graph tab")

# Dictionary tab
elif active_tab == "Dictionary":
    with st.container():
        st.write("Dictionary tab")