File size: 16,629 Bytes
0d0f07a
 
 
14c3a4f
51778ca
7b3478d
 
dcc32dc
c7d9cf9
554cc8f
c7d9cf9
0d0f07a
e0ac5a8
0d0f07a
aa5c198
 
 
 
 
 
 
ee625fc
aa5c198
cdb0a70
 
 
 
94e7f68
 
 
 
 
e99824c
 
 
 
aa5c198
 
 
 
 
 
cdb0a70
 
 
e99824c
 
aa5c198
dde99f4
 
703ce10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde99f4
703ce10
 
 
 
 
 
dde99f4
 
 
 
 
 
 
 
 
 
0d0f07a
c7d9cf9
dde99f4
 
 
 
 
 
 
 
 
2605d63
 
 
dde99f4
 
0d0f07a
dde99f4
 
 
0d0f07a
dde99f4
 
 
 
 
 
 
 
910ea33
dde99f4
 
 
910ea33
dde99f4
 
 
6640785
dde99f4
 
 
 
 
 
6640785
dde99f4
b24ad56
dde99f4
 
 
 
 
 
 
 
910ea33
dde99f4
 
 
 
 
 
 
 
14c3a4f
ee625fc
dde99f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf0a5e
dde99f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee625fc
dde99f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee625fc
dde99f4
 
 
 
 
 
ee625fc
dde99f4
 
7b3478d
dde99f4
0d0f07a
dde99f4
7b3478d
dde99f4
 
 
 
 
 
 
 
 
 
7b3478d
dde99f4
 
 
 
 
 
 
a1d0fa4
 
dde99f4
554cc8f
dde99f4
46e623d
dde99f4
 
 
 
 
 
 
46e623d
dde99f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e13e1c
dde99f4
 
 
 
8e13e1c
 
dde99f4
703ce10
 
22f86a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ac94
 
 
 
 
46e623d
c7d9cf9
0d0f07a
dde99f4
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import streamlit as st
from streamlit_option_menu import option_menu
from word2vec import *
import pandas as pd
from autocomplete import *
from vector_graph import *
from plots import *
from lsj_dict import *
import json
from streamlit_tags import st_tags, st_tags_sidebar


st.set_page_config(page_title="ἄγαλμα | AGALMA", layout="centered", page_icon="images/AGALMA_logo.png")

# Cache data
@st.cache_data
def load_lsj_dict():
    return json.load(open('lsj_dict.json', 'r'))

@st.cache_data
def load_all_models_words():
    return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)

@st.cache_data
def load_models_for_word_dict():
    return word_in_models_dict('corpora/compass_filtered.pkl.gz')


@st.cache_data
def load_all_lemmas():
    return load_compressed_word_list('all_lemmas.pkl.gz')

@st.cache_data
def load_lemma_count_dict():
    return count_lemmas('lemma_list_raw')

# Load compressed word list
all_models_words = load_all_models_words()

# Prepare lsj dictionary
lemma_dict = load_lsj_dict()

# Load dictionary with words as keys and eligible models as values
models_for_word_dict = load_models_for_word_dict()

lemma_counts = load_lemma_count_dict()




# Set styles for menu
styles = {
    "container": {"display": "flex", "justify-content": "center"},
    "nav": {"display": "flex", "gap": "2px", "margin": "5px"},
    "nav-item": {"flex": "1", "font-family": "Sans-serif"},
    "nav-link": {
        "background-color": "#f0f0f0",
        "border": "1px solid #ccc",
        "border-radius": "5px",
        "padding": "10px",
        "width": "100px",  
        "height": "60px",  
        "display": "flex",
        "align-items": "center",
        "justify-content": "center",
        "transition": "background-color 0.3s, color 0.3s",
        "color": "black",
        "text-decoration": "none"
    },
    "nav-link:hover": {
        "background-color": "rgb(238, 238, 238)",
        "color": "#000"
    },
    "nav-link-selected": {
        "background-color": "#B8E52B",
        "color": "white",
        "font-weight": "bold"
    },
    "icon": {"display": "None"}
}

with st.sidebar:
    st.image('images/AGALMA_logo.png', width=250)
    st.markdown('# ἄγαλμα | AGALMA')
    selected = option_menu(None, ["App", "About", "FAQ", "License"],
                           menu_icon="menu", default_index=0, orientation="vertical")
    
if selected == "App":
    # Horizontal menu
    active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'], 
        menu_icon="cast", default_index=0, orientation="horizontal", styles=styles)


    # Adding CSS style to remove list-style-type
    st.markdown("""
    <style>
    /* Define a class to remove list-style-type */
    .no-list-style {
        list-style-type: none;
    }
    </style>
    """, unsafe_allow_html=True)



    # Nearest neighbours tab
    if active_tab == "Nearest neighbours":
        
        # All models in a list
        eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
        all_models_words = load_all_models_words()
        
        with st.container():
            st.markdown("## Nearest Neighbours")
            st.markdown('Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
            target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
            if len(target_word) > 0:
                target_word = target_word[0]
                
                eligible_models = models_for_word_dict[target_word]
            
            models = st.multiselect(
                "Select models to search for neighbours",
                eligible_models
                )
            n = st.slider("Number of neighbours", 1, 50, 15)
            
            nearest_neighbours_button = st.button("Find nearest neighbours")

        if nearest_neighbours_button:
            if validate_nearest_neighbours(target_word, n, models) == False:
                st.error('Please fill in all fields')
            else:
                # Rewrite models to list of all loaded models
                models = load_selected_models(models)
                
                nearest_neighbours = get_nearest_neighbours(target_word, n, models)
                
                all_dfs = []
                                
                # Create dataframes
                for model in nearest_neighbours.keys():
                    st.write(f"### {model}")
                    df = pd.DataFrame(
                        nearest_neighbours[model],
                        columns = ['Word', 'Cosine Similarity']
                    )
                    
                    # Add word occurences to dataframe
                    df['Occurences'] = df['Word'].apply(lambda x: lemma_counts[model][x])


                    
                    all_dfs.append((model, df))
                    st.table(df)        
                
                
                # Store content in a temporary file
                tmp_file = store_df_in_temp_file(all_dfs)
                
                # Open the temporary file and read its content
                with open(tmp_file, "rb") as file:
                    file_byte = file.read()
                    
                    # Create download button
                    st.download_button(
                        "Download results",
                        data=file_byte,
                        file_name = f'nearest_neighbours_{target_word}_TEST.xlsx',
                        mime='application/octet-stream'
                        )
                    

    # Cosine similarity tab
    elif active_tab == "Cosine similarity":
        all_models_words = load_all_models_words()
        
        with st.container():
            eligible_models_1 = []
            eligible_models_2 = []
            st.markdown("## Cosine similarity")
            st.markdown('Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
            col1, col2 = st.columns(2)
            col3, col4 = st.columns(2)
            with col1:
                word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
                if len(word_1) > 0:
                    word_1 = word_1[0]
                    eligible_models_1 = models_for_word_dict[word_1]
                    
            with col2:
                time_slice_1 = st.selectbox("Time slice word 1", options = eligible_models_1)


            with st.container():
                with col3:
                    word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
                    if len(word_2) > 0:
                        word_2 = word_2[0]
                        eligible_models_2 = models_for_word_dict[word_2]
                    
                with col4:
                    time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
        
            # Create button for calculating cosine similarity
            cosine_similarity_button = st.button("Calculate cosine similarity")
        
        # If the button is clicked, execute calculation
        if cosine_similarity_button:
            cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
            st.write(cosine_simularity_score)

    # 3D graph tab
    elif active_tab == "3D graph":
        st.markdown("## 3D graph")
        st.markdown('Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
        
        col1, col2 = st.columns(2)
        
        # Load compressed word list
        all_models_words = load_all_models_words()
        
        with st.container():
            eligible_models = []
            with col1:
                word = st.multiselect("Enter a word", all_models_words, max_selections=1)
                if len(word) > 0:
                    word = word[0]
                    eligible_models = models_for_word_dict[word]
                
            with col2:
                time_slice = st.selectbox("Time slice", eligible_models)

            n = st.slider("Number of words", 1, 50, 15)

            graph_button = st.button("Create 3D graph")
            
            if graph_button:
                time_slice_model = convert_time_name_to_model(time_slice)
                nearest_neighbours_vectors = get_nearest_neighbours_vectors(word, time_slice_model, n)
                
                fig, df = make_3d_plot_tSNE(nearest_neighbours_vectors, word, time_slice_model)            
                
                st.plotly_chart(fig)
                
                
                
            
                
    # Dictionary tab
    elif active_tab == "Dictionary":
        
        with st.container():
            st.markdown('## Dictionary')
            st.markdown('Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')


            all_lemmas = load_all_lemmas()
            
            # query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
            
            query_tag = st_tags(label='',
                                text = '',
                                value = [],
                                suggestions = all_lemmas,
                                maxtags = 1,
                                key = '1'
                                )
            
            # If a word has been selected by user
            if query_tag:
                st.write(f"### {query_tag[0]}")
                
                # Display word information
                if query_tag[0] in lemma_dict:
                    data = lemma_dict[query_tag[0]]
                elif query_tag[0].capitalize() in lemma_dict: # Some words are capitalized in the dictionary
                    data = lemma_dict[query_tag[0].capitalize()]
                else:
                    st.error("Word not found in dictionary")
                
                # Put text in readable format
                text = format_text(data)
                
                
                st.markdown(format_text(data), unsafe_allow_html = True)
                
                
                
                st.markdown("""
                            <style>
                            .tab {
                                display: inline-block;
                                margin-left: 4em;
                            }
                            .tr {
                                font-weight: bold;
                            }
                            .list-class {
                                list-style-type: none;
                                margin-top: 1em;
                            }
                            .primary-indicator {
                                font-weight: bold;
                                font-size: x-large;
                            }
                            .secondary-indicator {
                                font-weight: bold;
                                font-size: large;
                            }
                            .tertiary-indicator {
                                font-weight: bold;
                                font-size: medium;
                            }
                            .quaternary-indicator {
                                font-weight: bold;
                                font-size: medium;
                            }
                            .primary-class {
                                padding-left: 2em;
                            }
                            .secondary-class {
                                padding-left: 4em;
                            }
                            .tertiary-class {
                                padding-left: 6em;
                            }
                            .quaternary-class {
                                padding-left: 8em;
                            }
                            </style>
                            """, unsafe_allow_html=True)
                        

    # About tab
    elif active_tab == "About":
        st.markdown("""
            ## About
            Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nec purus nec nunc ultricies ultricies.
            """)


    elif active_tab == "FAQ":
        st.markdown("""
            ## FAQ
            """)
        
        with st.expander('''**Which models is this interface based on?**'''):
            st.write(
                    "This interface is based on five language models. \
                    Language models are statistical models of language, \
                    which store statistical information about word co-occurrence during the training phase. \
                    During training they process a corpus of texts in the target language(s). \
                    Once trained, models can be used to extract information about the language \
                    (in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
                    The models on which this interface is based are Word Embedding models."
                    )
            
        with st.expander('''**Which corpus was used to train the models?**'''):
            st.write(
                "The five models on which this interface is based were trained on five slices of the Diorisis Ancient Greek Corpus (Vatri & McGillivray 2018)."
            )
            
            
if selected == "About":
    st.markdown("""
        ## About
        Welcome to AGALMA | ἄγαλμα, the Ancient Greek Accessible Language Models for linguistic Analysis!        
        
        This interface was developed in the framework of Silvia Stopponi’s PhD project, \
        supervised by Saskia Peels-Matthey and Malvina Nissim at the University of Groningen (The Netherlands). \
        The aim of this tool is to make language models trained on Ancient Greek available to all interested people, respectless of their coding skills. \
            
        The following people were involved in the creation of this interface:
        
        **Mark den Ouden**
        
        **Silvia Stopponi** trained the models, defined the structure of the interface, and wrote the textual content.
        
        **Saskia Peels-Matthey** supervised the project and revised the structure of the interface and the textual content.
        
        **Malvina Nissim** supervised the project.
        
        **Anchoring Innovation** financially supported the creation of this interface. \
        Anchoring Innovation is the Gravitation Grant research agenda of the Dutch National Research School in Classical Studies, OIKOS. \
        It is financially supported by the Dutch ministry of Education, Culture and Science (NWO project number 024.003.012).
        
        <div style="text-align: center; font-weight: bold;">How to cite</div>
        
        If you use this interface for your research, please cite it as:

        Stopponi, Silvia, Mark den Ouden, Saskia Peels-Matthey & Malvina Nissim. 2024. \
        <span style="font-style: italic;">AGALMA: Ancient Greek Accessible Language Models for linguistic Analysis.</span>
        
        """, unsafe_allow_html=True)
    
if selected == "License":
    st.markdown("""
        ## License
        The cosine similarity, nearest neighbours, and 3D representation data are licensed under a CC BY License.

        The LSJ dictionary has a CC BY-SA license and comes from the Unicode version of the dictionary produced by \
        [Giuseppe G. A. Celano](%s). The original (Betacode) version is provided under a CC BY-SA license by the [Perseus Digital Library](https://www.perseus.tufts.edu/). \
        Data available at https://github.com/PerseusDL/lexica/.
        """ % 'https://github.com/gcelano/LSJ_GreekUnicode?tab=readme-ov-file')
            
            

streamlit_style = """
            <style> 
            html, body {
                font-family: 'Helvetica';
            }
            </style>
            """
            
st.markdown(streamlit_style, unsafe_allow_html=True)