|
import math |
|
from abc import ABC, abstractmethod |
|
from dataclasses import dataclass |
|
from typing import Callable, Optional, Tuple, Union |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.utils import BaseOutput |
|
from torch import Tensor |
|
from safetensors import safe_open |
|
|
|
|
|
from ltx_video.utils.torch_utils import append_dims |
|
|
|
from ltx_video.utils.diffusers_config_mapping import ( |
|
diffusers_and_ours_config_mapping, |
|
make_hashable_key, |
|
) |
|
|
|
|
|
def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None): |
|
if num_steps == 1: |
|
return torch.tensor([1.0]) |
|
if linear_steps is None: |
|
linear_steps = num_steps // 2 |
|
linear_sigma_schedule = [ |
|
i * threshold_noise / linear_steps for i in range(linear_steps) |
|
] |
|
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps |
|
quadratic_steps = num_steps - linear_steps |
|
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2) |
|
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / ( |
|
quadratic_steps**2 |
|
) |
|
const = quadratic_coef * (linear_steps**2) |
|
quadratic_sigma_schedule = [ |
|
quadratic_coef * (i**2) + linear_coef * i + const |
|
for i in range(linear_steps, num_steps) |
|
] |
|
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0] |
|
sigma_schedule = [1.0 - x for x in sigma_schedule] |
|
return torch.tensor(sigma_schedule[:-1]) |
|
|
|
|
|
def simple_diffusion_resolution_dependent_timestep_shift( |
|
samples_shape: torch.Size, |
|
timesteps: Tensor, |
|
n: int = 32 * 32, |
|
) -> Tensor: |
|
if len(samples_shape) == 3: |
|
_, m, _ = samples_shape |
|
elif len(samples_shape) in [4, 5]: |
|
m = math.prod(samples_shape[2:]) |
|
else: |
|
raise ValueError( |
|
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" |
|
) |
|
snr = (timesteps / (1 - timesteps)) ** 2 |
|
shift_snr = torch.log(snr) + 2 * math.log(m / n) |
|
shifted_timesteps = torch.sigmoid(0.5 * shift_snr) |
|
|
|
return shifted_timesteps |
|
|
|
|
|
def time_shift(mu: float, sigma: float, t: Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
|
|
def get_normal_shift( |
|
n_tokens: int, |
|
min_tokens: int = 1024, |
|
max_tokens: int = 4096, |
|
min_shift: float = 0.95, |
|
max_shift: float = 2.05, |
|
) -> Callable[[float], float]: |
|
m = (max_shift - min_shift) / (max_tokens - min_tokens) |
|
b = min_shift - m * min_tokens |
|
return m * n_tokens + b |
|
|
|
|
|
def strech_shifts_to_terminal(shifts: Tensor, terminal=0.1): |
|
""" |
|
Stretch a function (given as sampled shifts) so that its final value matches the given terminal value |
|
using the provided formula. |
|
|
|
Parameters: |
|
- shifts (Tensor): The samples of the function to be stretched (PyTorch Tensor). |
|
- terminal (float): The desired terminal value (value at the last sample). |
|
|
|
Returns: |
|
- Tensor: The stretched shifts such that the final value equals `terminal`. |
|
""" |
|
if shifts.numel() == 0: |
|
raise ValueError("The 'shifts' tensor must not be empty.") |
|
|
|
|
|
if terminal <= 0 or terminal >= 1: |
|
raise ValueError("The terminal value must be between 0 and 1 (exclusive).") |
|
|
|
|
|
one_minus_z = 1 - shifts |
|
scale_factor = one_minus_z[-1] / (1 - terminal) |
|
stretched_shifts = 1 - (one_minus_z / scale_factor) |
|
|
|
return stretched_shifts |
|
|
|
|
|
def sd3_resolution_dependent_timestep_shift( |
|
samples_shape: torch.Size, |
|
timesteps: Tensor, |
|
target_shift_terminal: Optional[float] = None, |
|
) -> Tensor: |
|
""" |
|
Shifts the timestep schedule as a function of the generated resolution. |
|
|
|
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. |
|
For more details: https://arxiv.org/pdf/2403.03206 |
|
|
|
In Flux they later propose a more dynamic resolution dependent timestep shift, see: |
|
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 |
|
|
|
|
|
Args: |
|
samples_shape (torch.Size): The samples batch shape (batch_size, channels, height, width) or |
|
(batch_size, channels, frame, height, width). |
|
timesteps (Tensor): A batch of timesteps with shape (batch_size,). |
|
target_shift_terminal (float): The target terminal value for the shifted timesteps. |
|
|
|
Returns: |
|
Tensor: The shifted timesteps. |
|
""" |
|
if len(samples_shape) == 3: |
|
_, m, _ = samples_shape |
|
elif len(samples_shape) in [4, 5]: |
|
m = math.prod(samples_shape[2:]) |
|
else: |
|
raise ValueError( |
|
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" |
|
) |
|
|
|
shift = get_normal_shift(m) |
|
time_shifts = time_shift(shift, 1, timesteps) |
|
if target_shift_terminal is not None: |
|
time_shifts = strech_shifts_to_terminal(time_shifts, target_shift_terminal) |
|
return time_shifts |
|
|
|
|
|
class TimestepShifter(ABC): |
|
@abstractmethod |
|
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor: |
|
pass |
|
|
|
|
|
@dataclass |
|
class RectifiedFlowSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps=1000, |
|
shifting: Optional[str] = None, |
|
base_resolution: int = 32**2, |
|
target_shift_terminal: Optional[float] = None, |
|
sampler: Optional[str] = "Uniform", |
|
shift: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.init_noise_sigma = 1.0 |
|
self.num_inference_steps = None |
|
self.sampler = sampler |
|
self.shifting = shifting |
|
self.base_resolution = base_resolution |
|
self.target_shift_terminal = target_shift_terminal |
|
self.timesteps = self.sigmas = self.get_initial_timesteps( |
|
num_train_timesteps, shift=shift |
|
) |
|
self.shift = shift |
|
|
|
def get_initial_timesteps( |
|
self, num_timesteps: int, shift: Optional[float] = None |
|
) -> Tensor: |
|
if self.sampler == "Uniform": |
|
return torch.linspace(1, 1 / num_timesteps, num_timesteps) |
|
elif self.sampler == "LinearQuadratic": |
|
return linear_quadratic_schedule(num_timesteps) |
|
elif self.sampler == "Constant": |
|
assert ( |
|
shift is not None |
|
), "Shift must be provided for constant time shift sampler." |
|
return time_shift( |
|
shift, 1, torch.linspace(1, 1 / num_timesteps, num_timesteps) |
|
) |
|
|
|
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor: |
|
if self.shifting == "SD3": |
|
return sd3_resolution_dependent_timestep_shift( |
|
samples_shape, timesteps, self.target_shift_terminal |
|
) |
|
elif self.shifting == "SimpleDiffusion": |
|
return simple_diffusion_resolution_dependent_timestep_shift( |
|
samples_shape, timesteps, self.base_resolution |
|
) |
|
return timesteps |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: Optional[int] = None, |
|
samples_shape: Optional[torch.Size] = None, |
|
timesteps: Optional[Tensor] = None, |
|
device: Union[str, torch.device] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
If `timesteps` are provided, they will be used instead of the scheduled timesteps. |
|
|
|
Args: |
|
num_inference_steps (`int` *optional*): The number of diffusion steps used when generating samples. |
|
samples_shape (`torch.Size` *optional*): The samples batch shape, used for shifting. |
|
timesteps ('torch.Tensor' *optional*): Specific timesteps to use instead of scheduled timesteps. |
|
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. |
|
""" |
|
if timesteps is not None and num_inference_steps is not None: |
|
raise ValueError( |
|
"You cannot provide both `timesteps` and `num_inference_steps`." |
|
) |
|
if timesteps is None: |
|
num_inference_steps = min( |
|
self.config.num_train_timesteps, num_inference_steps |
|
) |
|
timesteps = self.get_initial_timesteps( |
|
num_inference_steps, shift=self.shift |
|
).to(device) |
|
timesteps = self.shift_timesteps(samples_shape, timesteps) |
|
else: |
|
timesteps = torch.Tensor(timesteps).to(device) |
|
num_inference_steps = len(timesteps) |
|
self.timesteps = timesteps |
|
self.num_inference_steps = num_inference_steps |
|
self.sigmas = self.timesteps |
|
|
|
@staticmethod |
|
def from_pretrained(pretrained_model_path: Union[str, os.PathLike]): |
|
pretrained_model_path = Path(pretrained_model_path) |
|
if pretrained_model_path.is_file(): |
|
comfy_single_file_state_dict = {} |
|
with safe_open(pretrained_model_path, framework="pt", device="cpu") as f: |
|
metadata = f.metadata() |
|
for k in f.keys(): |
|
comfy_single_file_state_dict[k] = f.get_tensor(k) |
|
configs = json.loads(metadata["config"]) |
|
config = configs["scheduler"] |
|
del comfy_single_file_state_dict |
|
|
|
elif pretrained_model_path.is_dir(): |
|
diffusers_noise_scheduler_config_path = ( |
|
pretrained_model_path / "scheduler" / "scheduler_config.json" |
|
) |
|
|
|
with open(diffusers_noise_scheduler_config_path, "r") as f: |
|
scheduler_config = json.load(f) |
|
hashable_config = make_hashable_key(scheduler_config) |
|
if hashable_config in diffusers_and_ours_config_mapping: |
|
config = diffusers_and_ours_config_mapping[hashable_config] |
|
return RectifiedFlowScheduler.from_config(config) |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Optional[int] = None |
|
) -> torch.FloatTensor: |
|
|
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: torch.FloatTensor, |
|
sample: torch.FloatTensor, |
|
return_dict: bool = True, |
|
stochastic_sampling: Optional[bool] = False, |
|
**kwargs, |
|
) -> Union[RectifiedFlowSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
z_{t_1} = z_t - \Delta_t * v |
|
The method finds the next timestep that is lower than the input timestep(s) and denoises the latents |
|
to that level. The input timestep(s) are not required to be one of the predefined timesteps. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model - the velocity, |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain (global or per-token). |
|
sample (`torch.FloatTensor`): |
|
A current latent tokens to be de-noised. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. |
|
stochastic_sampling (`bool`, *optional*, defaults to `False`): |
|
Whether to use stochastic sampling for the sampling process. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
t_eps = 1e-6 |
|
|
|
timesteps_padded = torch.cat( |
|
[self.timesteps, torch.zeros(1, device=self.timesteps.device)] |
|
) |
|
|
|
|
|
if timestep.ndim == 0: |
|
|
|
lower_mask = timesteps_padded < timestep - t_eps |
|
lower_timestep = timesteps_padded[lower_mask][0] |
|
dt = timestep - lower_timestep |
|
|
|
else: |
|
|
|
assert timestep.ndim == 2 |
|
lower_mask = timesteps_padded[:, None, None] < timestep[None] - t_eps |
|
lower_timestep = lower_mask * timesteps_padded[:, None, None] |
|
lower_timestep, _ = lower_timestep.max(dim=0) |
|
dt = (timestep - lower_timestep)[..., None] |
|
|
|
|
|
if stochastic_sampling: |
|
x0 = sample - timestep[..., None] * model_output |
|
next_timestep = timestep[..., None] - dt |
|
prev_sample = self.add_noise(x0, torch.randn_like(sample), next_timestep) |
|
else: |
|
prev_sample = sample - dt * model_output |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
sigmas = timesteps |
|
sigmas = append_dims(sigmas, original_samples.ndim) |
|
alphas = 1 - sigmas |
|
noisy_samples = alphas * original_samples + sigmas * noise |
|
return noisy_samples |
|
|