Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,907 Bytes
7fe98ab d61a0bc 7fe98ab ddd3c88 7fe98ab d191aca 7fe98ab ddd3c88 7fe98ab ddd3c88 d191aca ddd3c88 d191aca ddd3c88 01900db ddd3c88 d191aca ddd3c88 a8fbd57 ddd3c88 01900db ddd3c88 d191aca a8fbd57 ddd3c88 a8fbd57 ddd3c88 a8fbd57 afc7727 ddd3c88 7fe98ab 2eea82e 9f55bc7 7fe98ab 2eea82e d191aca 2eea82e 7fe98ab 0751f29 7fe98ab ddd3c88 1a236aa d191aca 1a236aa 7fe98ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import spaces
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
import numpy as np
pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_temporal_compression_ratio)
width = width - (width % pipe.vae_temporal_compression_ratio)
return height, width
@spaces.GPU
def generate(prompt,
negative_prompt,
image,
steps,
num_frames,
seed,
randomize_seed,
t2v, progress=gr.Progress(track_tqdm=True)):
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is not None or t2v:
condition1 = LTXVideoCondition(video=image, frame_index=0)
latents = pipe(
conditions=condition1,
prompt=prompt,
negative_prompt=negative_prompt,
# width=downscaled_width,
# height=downscaled_height,
num_frames=num_frames,
num_inference_steps=steps,
decode_timestep = 0.05,
decode_noise_scale = 0.025,
generator=torch.Generator().manual_seed(seed),
#output_type="latent",
).frames
else:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
# width=downscaled_width,
# height=downscaled_height,
num_frames=num_frames,
num_inference_steps=steps,
decode_timestep = 0.05,
decode_noise_scale = 0.025,
generator=torch.Generator().manual_seed(seed),
#output_type="latent",
).frames
# Part 1. Generate video at smaller resolution
# Text-only conditioning is also supported without the need to pass `conditions`
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
# latents = pipe(
# conditions=condition1,
# prompt=prompt,
# negative_prompt=negative_prompt,
# # width=downscaled_width,
# # height=downscaled_height,
# num_frames=num_frames,
# num_inference_steps=steps,
# decode_timestep = 0.05,
# decode_noise_scale = 0.025,
# generator=torch.Generator().manual_seed(seed),
# #output_type="latent",
# ).frames
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
# upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
# upscaled_latents = pipe_upsample(
# latents=latents,
# output_type="latent"
# ).frames
# # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
# video = pipe(
# conditions=condition1,
# prompt=prompt,
# negative_prompt=negative_prompt,
# width=upscaled_width,
# height=upscaled_height,
# num_frames=num_frames,
# denoise_strength=0.4, # Effectively, 4 inference steps out of 10
# num_inference_steps=10,
# latents=upscaled_latents,
# decode_timestep=0.05,
# image_cond_noise_scale=0.025,
# generator=torch.Generator().manual_seed(seed),
# output_type="pil",
# ).frames[0]
# Part 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in latents[0]]
export_to_video(latents, "output.mp4", fps=24)
return "output.mp4"
css="""
#col-container {
margin: 0 auto;
max-width: 900px;
}
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
gr.Markdown("# LTX Video 0.9.7 Distilled")
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(label="")
prompt = gr.Textbox(label="prompt")
t2v = gr.Checkbox(label="run text-to-video", value=False)
run_button = gr.Button()
with gr.Column():
output = gr.Video(interactive=False)
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="negative prompt", value="", visible=False)
with gr.Row():
seed = gr.Number(label="seed", value=0, precision=0)
randomize_seed = gr.Checkbox(label="randomize seed")
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1)
num_frames = gr.Slider(label="# frames", minimum=1, maximum=200, value=161, step=1)
run_button.click(fn=generate,
inputs=[prompt,
negative_prompt,
image,
steps,
num_frames,
seed,
randomize_seed, t2v],
outputs=[output])
demo.launch()
|