Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,232 Bytes
7fe98ab de0b990 d61a0bc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 3d79b08 d61a0bc 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d191aca 3d79b08 d8bb216 626b672 3d79b08 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 7fe98ab 6c12bfc d8bb216 6c12bfc d8bb216 626b672 6c12bfc 626b672 d8bb216 626b672 d8bb216 c942f44 626b672 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d191aca b972f40 de0b990 3d79b08 6c12bfc de0b990 d8bb216 3d79b08 d8bb216 aebf56b 626b672 d8bb216 6c12bfc 3d79b08 d8bb216 3d79b08 d8bb216 3d79b08 6c12bfc d8bb216 6c12bfc 626b672 3d79b08 626b672 3d79b08 d8bb216 626b672 d8bb216 626b672 6c12bfc d8bb216 626b672 d8bb216 3d79b08 d8bb216 626b672 d8bb216 626b672 3d79b08 de0b990 626b672 de0b990 626b672 cbdec18 3d79b08 cbdec18 3d79b08 cbdec18 3d79b08 cbdec18 626b672 d8bb216 3d79b08 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 3d79b08 626b672 3d79b08 626b672 3d79b08 626b672 d8bb216 626b672 d8bb216 6c12bfc 7fe98ab 626b672 2eea82e de0b990 6ad4062 6c12bfc 3d79b08 6ad4062 3d79b08 d8bb216 2eea82e 6c12bfc d8bb216 7fe98ab 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 3d79b08 d8bb216 3d79b08 d8bb216 3d79b08 d8bb216 3d79b08 d8bb216 3d79b08 d8bb216 626b672 d8bb216 626b672 d8bb216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import torch
import spaces
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
import math # For math.round, though built-in round works for floats
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
# Model specific paths (to be downloaded)
DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview"
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"
UPSCALER_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0 # Frames per second for duration calculation
# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=DISTILLED_MODEL_REPO,
filename=DISTILLED_MODEL_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=UPSCALER_REPO,
filename=SPATIAL_UPSCALER_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
print("Latent upsampler created on CPU.")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance: # Check if it was created before moving
latent_upsampler_instance.to(target_inference_device)
@spaces.GPU
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode,
ui_steps, duration_ui, # << CHANGED from num_frames_ui
ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
# Convert duration_ui (seconds) to actual_num_frames (N*8+1 format)
target_frames_ideal = duration_ui * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1: # ensure positive for calculation
target_frames_rounded = 1
# Calculate N for N*8+1, ensuring it's rounded to the nearest integer
# (target_frames_rounded - 1) could be float if target_frames_rounded is float
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
# Clamp to the allowed min (9) and max (MAX_NUM_FRAMES) N*8+1 values
actual_num_frames = max(9, actual_num_frames)
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
actual_height = int(height_ui)
actual_width = int(width_ui)
# actual_num_frames is now calculated above
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
# This padding ensures the model gets a frame count that is N*8+1
# Since actual_num_frames is already N*8+1, this should preserve it.
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
if num_frames_padded != actual_num_frames:
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
# This case should ideally not happen if actual_num_frames is correctly N*8+1 and >= 9.
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded, # Use the padded value for the model
"frame_rate": int(FPS),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt",
"conditioning_items": None,
"media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
if mode == "image-to-video" and input_image_filepath:
try:
media_tensor = load_image_to_tensor_with_resize_and_crop(
input_image_filepath, actual_height, actual_width
)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
print(f"Error loading image {input_image_filepath}: {e}")
raise gr.Error(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath,
height=actual_height,
width=actual_width,
max_frames=int(ui_frames_to_use), # This is from a separate slider for V2V
padding=padding_values
).to(target_inference_device)
except Exception as e:
print(f"Error loading video {input_video_filepath}: {e}")
raise gr.Error(f"Could not load video: {e}")
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
# Models are moved globally once, no need to move per call unless strategy changes.
# pipeline_instance.to(target_inference_device)
# if latent_upsampler_instance:
# latent_upsampler_instance.to(target_inference_device)
active_latent_upsampler = None
if improve_texture_flag and latent_upsampler_instance:
active_latent_upsampler = latent_upsampler_instance
#print("Models moved.")
result_images_tensor = None
if improve_texture_flag:
if not active_latent_upsampler:
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
if "timesteps" not in first_pass_args:
first_pass_args["num_inference_steps"] = int(ui_steps)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = call_kwargs.copy()
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
# These keys might not exist if improve_texture_flag is false from the start of call_kwargs
single_pass_call_kwargs.pop("first_pass", None)
single_pass_call_kwargs.pop("second_pass", None)
single_pass_call_kwargs.pop("downscale_factor", None)
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise gr.Error("Generation failed.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
# Crop to actual_num_frames, which is the desired output length
result_images_tensor = result_images_tensor[
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
temp_dir = tempfile.mkdtemp()
timestamp = random.randint(10000,99999)
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video")
video_writer.append_data(video_np[frame_idx])
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
video_writer.append_data(video_np[frame_idx])
except Exception as e2:
print(f"Fallback video saving error: {e2}")
raise gr.Error(f"Failed to save video: {e2}")
if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
if os.path.exists(input_image_filepath.name):
try:
input_image_filepath.close()
os.remove(input_image_filepath.name)
except: pass
elif input_image_filepath and os.path.exists(input_image_filepath) and input_image_filepath.startswith(tempfile.gettempdir()):
try: os.remove(input_image_filepath)
except: pass
if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
if os.path.exists(input_video_filepath.name):
try:
input_video_filepath.close()
os.remove(input_video_filepath.name)
except: pass
elif input_video_filepath and os.path.exists(input_video_filepath) and input_video_filepath.startswith(tempfile.gettempdir()):
try: os.remove(input_video_filepath)
except: pass
return output_video_path
# --- Gradio UI Definition ---
css="""
#col-container {
margin: 0 auto;
max-width: 900px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# LTX Video 0.9.7 Distilled")
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-distilled-04-25.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)")
with gr.Row():
with gr.Column():
with gr.Tab("image-to-video") as image_tab:
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam"])
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
with gr.Tab("text-to-video") as text_tab:
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
with gr.Tab("video-to-video") as video_tab:
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
duration_input = gr.Slider(
label="Video Duration (seconds)",
minimum=0.3,
maximum=8.5,
value=2,
step=0.1,
info=f"Target video duration (0.3s to 8.5s)"
)
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
with gr.Column():
output_video = gr.Video(label="Generated Video", interactive=False)
with gr.Accordion("Advanced settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
with gr.Row():
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7)) # Default to 7 if not found
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
with gr.Row():
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
# --- UPDATED INPUT LISTS ---
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
height_input, width_input, gr.State("text-to-video"),
steps_input, duration_input, gr.State(0), # Replaced num_frames_input with duration_input
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
height_input, width_input, gr.State("image-to-video"),
steps_input, duration_input, gr.State(0), # Replaced num_frames_input with duration_input
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
height_input, width_input, gr.State("video-to-video"),
steps_input, duration_input, frames_to_use, # Replaced num_frames_input with duration_input
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video")
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video], api_name="image_to_video")
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video], api_name="video_to_video")
if __name__ == "__main__":
if os.path.exists(models_dir) and os.path.isdir(models_dir):
print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=False) |