File size: 4,606 Bytes
7fe98ab
 
 
 
 
 
 
ddd3c88
7fe98ab
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd3c88
7fe98ab
ddd3c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe98ab
 
2eea82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f55bc7
7fe98ab
 
 
2eea82e
 
 
 
 
 
 
 
 
7fe98ab
 
 
 
 
 
 
 
ddd3c88
 
 
1a236aa
 
 
 
 
 
 
 
 
7fe98ab
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import spaces 
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video

pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()


def round_to_nearest_resolution_acceptable_by_vae(height, width):
    height = height - (height % pipe.vae_temporal_compression_ratio)
    width = width - (width % pipe.vae_temporal_compression_ratio)
    return height, width
    
@spaces.GPU
def generate(prompt,
             negative_prompt,
             image, 
             steps,
             num_frames,
             seed,
             randomize_seed):
    
    expected_height, expected_width = 768, 1152
    downscale_factor = 2 / 3

    if image is not None:
        condition1 = LTXVideoCondition(video=image, frame_index=0)
    else:
        condition1 = None

    # Part 1. Generate video at smaller resolution
    # Text-only conditioning is also supported without the need to pass `conditions`
    downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
    downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
    
    latents = pipe(
            conditions=condition1,
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=downscaled_width,
            height=downscaled_height,
            num_frames=num_frames,
            num_inference_steps=steps,
            decode_timestep = 0.05,
            decode_noise_scale = 0.025,
            generator=torch.Generator().manual_seed(seed),
            output_type="latent",
        ).frames
        
    # Part 2. Upscale generated video using latent upsampler with fewer inference steps
    # The available latent upsampler upscales the height/width by 2x
    upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
    upscaled_latents = pipe_upsample(
        latents=latents,
        output_type="latent"
    ).frames
    
    # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
    video = pipe(
        conditions=condition1,
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=upscaled_width,
        height=upscaled_height,
        num_frames=num_frames,
        denoise_strength=0.4,  # Effectively, 4 inference steps out of 10
        num_inference_steps=10,
        latents=upscaled_latents,
        decode_timestep=0.05,
        image_cond_noise_scale=0.025,
        generator=torch.Generator().manual_seed(seed),
        output_type="pil",
    ).frames[0]
    
    # Part 4. Downscale the video to the expected resolution
    video = [frame.resize((expected_width, expected_height)) for frame in video]
    return video



css="""
#col-container {
    margin: 0 auto;
    max-width: 900px;
}
"""

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:

  gr.Markdown("# LTX Video 0.9.7 Distilled")

  with gr.Row():
    with gr.Column():
      with gr.Group():
        image = gr.Image(label="")
        prompt = gr.Textbox(label="prompt")
      run_button = gr.Button()
    with gr.Column():
      output = gr.Video(interactive=False)
      

  with gr.Accordion("Advanced settings", open=False):
     n_prompt = gr.Textbox(label="negative prompt", value="", visible=False)  
     with gr.Row():
      seed = gr.Number(label="seed", value=0, precision=0)
      randomize_seed = gr.Checkbox(label="randomize seed")
     with gr.Row():
      steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1)
      num_frames = gr.Slider(label="# frames", minimum=1, maximum=200, value=161, step=1)

  
  run_button.click(fn=generate, 
                   inputs=[prompt,
             negative_prompt,
             image, 
             steps,
             num_frames,
             seed,
             randomize_seed], 
                   outputs=[output])
  

demo.launch()