Spaces:
Paused
Paused
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Credits | |
| This code is modified from https://github.com/GitYCC/g2pW | |
| """ | |
| from typing import Dict | |
| from typing import List | |
| from typing import Tuple | |
| import numpy as np | |
| from .utils import tokenize_and_map | |
| ANCHOR_CHAR = '▁' | |
| def prepare_onnx_input(tokenizer, | |
| labels: List[str], | |
| char2phonemes: Dict[str, List[int]], | |
| chars: List[str], | |
| texts: List[str], | |
| query_ids: List[int], | |
| use_mask: bool=False, | |
| window_size: int=None, | |
| max_len: int=512) -> Dict[str, np.array]: | |
| if window_size is not None: | |
| truncated_texts, truncated_query_ids = _truncate_texts( | |
| window_size=window_size, texts=texts, query_ids=query_ids) | |
| input_ids = [] | |
| token_type_ids = [] | |
| attention_masks = [] | |
| phoneme_masks = [] | |
| char_ids = [] | |
| position_ids = [] | |
| for idx in range(len(texts)): | |
| text = (truncated_texts if window_size else texts)[idx].lower() | |
| query_id = (truncated_query_ids if window_size else query_ids)[idx] | |
| try: | |
| tokens, text2token, token2text = tokenize_and_map( | |
| tokenizer=tokenizer, text=text) | |
| except Exception: | |
| print(f'warning: text "{text}" is invalid') | |
| return {} | |
| text, query_id, tokens, text2token, token2text = _truncate( | |
| max_len=max_len, | |
| text=text, | |
| query_id=query_id, | |
| tokens=tokens, | |
| text2token=text2token, | |
| token2text=token2text) | |
| processed_tokens = ['[CLS]'] + tokens + ['[SEP]'] | |
| input_id = list( | |
| np.array(tokenizer.convert_tokens_to_ids(processed_tokens))) | |
| token_type_id = list(np.zeros((len(processed_tokens), ), dtype=int)) | |
| attention_mask = list(np.ones((len(processed_tokens), ), dtype=int)) | |
| query_char = text[query_id] | |
| phoneme_mask = [1 if i in char2phonemes[query_char] else 0 for i in range(len(labels))] \ | |
| if use_mask else [1] * len(labels) | |
| char_id = chars.index(query_char) | |
| position_id = text2token[ | |
| query_id] + 1 # [CLS] token locate at first place | |
| input_ids.append(input_id) | |
| token_type_ids.append(token_type_id) | |
| attention_masks.append(attention_mask) | |
| phoneme_masks.append(phoneme_mask) | |
| char_ids.append(char_id) | |
| position_ids.append(position_id) | |
| outputs = { | |
| 'input_ids': np.array(input_ids).astype(np.int64), | |
| 'token_type_ids': np.array(token_type_ids).astype(np.int64), | |
| 'attention_masks': np.array(attention_masks).astype(np.int64), | |
| 'phoneme_masks': np.array(phoneme_masks).astype(np.float32), | |
| 'char_ids': np.array(char_ids).astype(np.int64), | |
| 'position_ids': np.array(position_ids).astype(np.int64), | |
| } | |
| return outputs | |
| def _truncate_texts(window_size: int, texts: List[str], | |
| query_ids: List[int]) -> Tuple[List[str], List[int]]: | |
| truncated_texts = [] | |
| truncated_query_ids = [] | |
| for text, query_id in zip(texts, query_ids): | |
| start = max(0, query_id - window_size // 2) | |
| end = min(len(text), query_id + window_size // 2) | |
| truncated_text = text[start:end] | |
| truncated_texts.append(truncated_text) | |
| truncated_query_id = query_id - start | |
| truncated_query_ids.append(truncated_query_id) | |
| return truncated_texts, truncated_query_ids | |
| def _truncate(max_len: int, | |
| text: str, | |
| query_id: int, | |
| tokens: List[str], | |
| text2token: List[int], | |
| token2text: List[Tuple[int]]): | |
| truncate_len = max_len - 2 | |
| if len(tokens) <= truncate_len: | |
| return (text, query_id, tokens, text2token, token2text) | |
| token_position = text2token[query_id] | |
| token_start = token_position - truncate_len // 2 | |
| token_end = token_start + truncate_len | |
| font_exceed_dist = -token_start | |
| back_exceed_dist = token_end - len(tokens) | |
| if font_exceed_dist > 0: | |
| token_start += font_exceed_dist | |
| token_end += font_exceed_dist | |
| elif back_exceed_dist > 0: | |
| token_start -= back_exceed_dist | |
| token_end -= back_exceed_dist | |
| start = token2text[token_start][0] | |
| end = token2text[token_end - 1][1] | |
| return (text[start:end], query_id - start, tokens[token_start:token_end], [ | |
| i - token_start if i is not None else None | |
| for i in text2token[start:end] | |
| ], [(s - start, e - start) for s, e in token2text[token_start:token_end]]) | |
| def get_phoneme_labels(polyphonic_chars: List[List[str]] | |
| ) -> Tuple[List[str], Dict[str, List[int]]]: | |
| labels = sorted(list(set([phoneme for char, phoneme in polyphonic_chars]))) | |
| char2phonemes = {} | |
| for char, phoneme in polyphonic_chars: | |
| if char not in char2phonemes: | |
| char2phonemes[char] = [] | |
| char2phonemes[char].append(labels.index(phoneme)) | |
| return labels, char2phonemes | |
| def get_char_phoneme_labels(polyphonic_chars: List[List[str]] | |
| ) -> Tuple[List[str], Dict[str, List[int]]]: | |
| labels = sorted( | |
| list(set([f'{char} {phoneme}' for char, phoneme in polyphonic_chars]))) | |
| char2phonemes = {} | |
| for char, phoneme in polyphonic_chars: | |
| if char not in char2phonemes: | |
| char2phonemes[char] = [] | |
| char2phonemes[char].append(labels.index(f'{char} {phoneme}')) | |
| return labels, char2phonemes | |