Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -13,6 +13,7 @@ from kolors.models.unet_2d_condition import UNet2DConditionModel 
     | 
|
| 13 | 
         
             
            from diffusers import AutoencoderKL, EulerDiscreteScheduler
         
     | 
| 14 | 
         | 
| 15 | 
         
             
            from huggingface_hub import snapshot_download
         
     | 
| 
         | 
|
| 16 | 
         | 
| 17 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 18 | 
         
             
            root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
         
     | 
| 
         @@ -58,6 +59,7 @@ pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", 
     | 
|
| 58 | 
         
             
            MAX_SEED = np.iinfo(np.int32).max
         
     | 
| 59 | 
         
             
            MAX_IMAGE_SIZE = 1024
         
     | 
| 60 | 
         | 
| 
         | 
|
| 61 | 
         
             
            def infer(prompt, ip_adapter_image, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, ip_adapter_scale=0.5, progress=gr.Progress(track_tqdm=True)):
         
     | 
| 62 | 
         
             
                if randomize_seed:
         
     | 
| 63 | 
         
             
                    seed = random.randint(0, MAX_SEED)
         
     | 
| 
         | 
|
| 13 | 
         
             
            from diffusers import AutoencoderKL, EulerDiscreteScheduler
         
     | 
| 14 | 
         | 
| 15 | 
         
             
            from huggingface_hub import snapshot_download
         
     | 
| 16 | 
         
            +
            import spaces 
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 19 | 
         
             
            root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
         
     | 
| 
         | 
|
| 59 | 
         
             
            MAX_SEED = np.iinfo(np.int32).max
         
     | 
| 60 | 
         
             
            MAX_IMAGE_SIZE = 1024
         
     | 
| 61 | 
         | 
| 62 | 
         
            +
            @spaces.GPU
         
     | 
| 63 | 
         
             
            def infer(prompt, ip_adapter_image, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, ip_adapter_scale=0.5, progress=gr.Progress(track_tqdm=True)):
         
     | 
| 64 | 
         
             
                if randomize_seed:
         
     | 
| 65 | 
         
             
                    seed = random.randint(0, MAX_SEED)
         
     |