Spaces:
Runtime error
Runtime error
change seed and analytics
Browse files
app.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from gradio_toggle import Toggle
|
| 3 |
import torch
|
| 4 |
from huggingface_hub import snapshot_download
|
|
|
|
| 5 |
|
| 6 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 7 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
|
@@ -20,6 +22,9 @@ import tempfile
|
|
| 20 |
import os
|
| 21 |
import gc
|
| 22 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Load Hugging Face token if needed
|
| 25 |
hf_token = os.getenv("HF_TOKEN")
|
|
@@ -36,9 +41,7 @@ with open(system_prompt_i2v_path, "r") as f:
|
|
| 36 |
# Set model download directory within Hugging Face Spaces
|
| 37 |
model_path = "asset"
|
| 38 |
if not os.path.exists(model_path):
|
| 39 |
-
snapshot_download(
|
| 40 |
-
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
|
| 41 |
-
)
|
| 42 |
|
| 43 |
# Global variables to load components
|
| 44 |
vae_dir = Path(model_path) / "vae"
|
|
@@ -47,6 +50,94 @@ scheduler_dir = Path(model_path) / "scheduler"
|
|
| 47 |
|
| 48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def load_vae(vae_dir):
|
| 52 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
|
@@ -185,12 +276,8 @@ vae = load_vae(vae_dir)
|
|
| 185 |
unet = load_unet(unet_dir)
|
| 186 |
scheduler = load_scheduler(scheduler_dir)
|
| 187 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 188 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
| 189 |
-
|
| 190 |
-
).to(device)
|
| 191 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
| 192 |
-
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
| 193 |
-
)
|
| 194 |
|
| 195 |
pipeline = XoraVideoPipeline(
|
| 196 |
transformer=unet,
|
|
@@ -205,9 +292,10 @@ pipeline = XoraVideoPipeline(
|
|
| 205 |
def generate_video_from_text(
|
| 206 |
prompt="",
|
| 207 |
enhance_prompt_toggle=False,
|
|
|
|
| 208 |
negative_prompt="",
|
| 209 |
frame_rate=25,
|
| 210 |
-
seed=
|
| 211 |
num_inference_steps=30,
|
| 212 |
guidance_scale=3,
|
| 213 |
height=512,
|
|
@@ -221,6 +309,21 @@ def generate_video_from_text(
|
|
| 221 |
duration=5,
|
| 222 |
)
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="t2v")
|
| 225 |
|
| 226 |
sample = {
|
|
@@ -269,9 +372,7 @@ def generate_video_from_text(
|
|
| 269 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 270 |
video_np = (video_np * 255).astype(np.uint8)
|
| 271 |
height, width = video_np.shape[1:3]
|
| 272 |
-
out = cv2.VideoWriter(
|
| 273 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
| 274 |
-
)
|
| 275 |
for frame in video_np[..., ::-1]:
|
| 276 |
out.write(frame)
|
| 277 |
out.release()
|
|
@@ -286,9 +387,10 @@ def generate_video_from_image(
|
|
| 286 |
image_path,
|
| 287 |
prompt="",
|
| 288 |
enhance_prompt_toggle=False,
|
|
|
|
| 289 |
negative_prompt="",
|
| 290 |
frame_rate=25,
|
| 291 |
-
seed=
|
| 292 |
num_inference_steps=30,
|
| 293 |
guidance_scale=3,
|
| 294 |
height=512,
|
|
@@ -310,9 +412,28 @@ def generate_video_from_image(
|
|
| 310 |
if not image_path:
|
| 311 |
raise gr.Error("Please provide an input image.", duration=5)
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="i2v")
|
| 318 |
|
|
@@ -353,9 +474,7 @@ def generate_video_from_image(
|
|
| 353 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 354 |
video_np = (video_np * 255).astype(np.uint8)
|
| 355 |
height, width = video_np.shape[1:3]
|
| 356 |
-
out = cv2.VideoWriter(
|
| 357 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
| 358 |
-
)
|
| 359 |
for frame in video_np[..., ::-1]:
|
| 360 |
out.write(frame)
|
| 361 |
out.release()
|
|
@@ -374,15 +493,9 @@ def generate_video_from_image(
|
|
| 374 |
|
| 375 |
def create_advanced_options():
|
| 376 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
| 377 |
-
seed = gr.Slider(
|
| 378 |
-
|
| 379 |
-
)
|
| 380 |
-
inference_steps = gr.Slider(
|
| 381 |
-
label="4.2 Inference Steps", minimum=1, maximum=50, step=1, value=30
|
| 382 |
-
)
|
| 383 |
-
guidance_scale = gr.Slider(
|
| 384 |
-
label="4.3 Guidance Scale", minimum=1.0, maximum=5.0, step=0.1, value=3.0
|
| 385 |
-
)
|
| 386 |
|
| 387 |
height_slider = gr.Slider(
|
| 388 |
label="4.4 Height",
|
|
@@ -451,9 +564,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 451 |
</div>
|
| 452 |
"""
|
| 453 |
)
|
| 454 |
-
with gr.Accordion(
|
| 455 |
-
" π Tips for Best Results", open=False, elem_id="instructions-accordion"
|
| 456 |
-
):
|
| 457 |
gr.Markdown(
|
| 458 |
"""
|
| 459 |
π Prompt Engineering
|
|
@@ -491,6 +602,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 491 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
| 492 |
lines=5,
|
| 493 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
txt2vid_enhance_toggle = Toggle(
|
| 495 |
label="Enhance Prompt",
|
| 496 |
value=False,
|
|
@@ -566,6 +683,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 566 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
| 567 |
lines=5,
|
| 568 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
img2vid_enhance_toggle = Toggle(
|
| 570 |
label="Enhance Prompt",
|
| 571 |
value=False,
|
|
@@ -593,9 +715,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 593 |
)
|
| 594 |
|
| 595 |
img2vid_advanced = create_advanced_options()
|
| 596 |
-
img2vid_generate = gr.Button(
|
| 597 |
-
"Step 6: Generate Video", variant="primary", size="lg"
|
| 598 |
-
)
|
| 599 |
|
| 600 |
with gr.Column():
|
| 601 |
img2vid_output = gr.Video(label="Generated Output")
|
|
@@ -632,15 +752,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 632 |
)
|
| 633 |
|
| 634 |
# [Previous event handlers remain the same]
|
| 635 |
-
txt2vid_preset.change(
|
| 636 |
-
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:]
|
| 637 |
-
)
|
| 638 |
|
| 639 |
txt2vid_generate.click(
|
| 640 |
fn=generate_video_from_text,
|
| 641 |
inputs=[
|
| 642 |
txt2vid_prompt,
|
| 643 |
txt2vid_enhance_toggle,
|
|
|
|
| 644 |
txt2vid_negative_prompt,
|
| 645 |
txt2vid_frame_rate,
|
| 646 |
*txt2vid_advanced,
|
|
@@ -651,9 +770,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 651 |
queue=True,
|
| 652 |
)
|
| 653 |
|
| 654 |
-
img2vid_preset.change(
|
| 655 |
-
fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[3:]
|
| 656 |
-
)
|
| 657 |
|
| 658 |
img2vid_generate.click(
|
| 659 |
fn=generate_video_from_image,
|
|
@@ -661,6 +778,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 661 |
img2vid_image,
|
| 662 |
img2vid_prompt,
|
| 663 |
img2vid_enhance_toggle,
|
|
|
|
| 664 |
img2vid_negative_prompt,
|
| 665 |
img2vid_frame_rate,
|
| 666 |
*img2vid_advanced,
|
|
@@ -672,6 +790,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
| 672 |
)
|
| 673 |
|
| 674 |
if __name__ == "__main__":
|
| 675 |
-
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
| 676 |
-
share=True, show_api=False
|
| 677 |
-
)
|
|
|
|
| 1 |
+
from functools import lru_cache
|
| 2 |
import gradio as gr
|
| 3 |
from gradio_toggle import Toggle
|
| 4 |
import torch
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 7 |
|
| 8 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 9 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
|
|
|
| 22 |
import os
|
| 23 |
import gc
|
| 24 |
from openai import OpenAI
|
| 25 |
+
import csv
|
| 26 |
+
from datetime import datetime
|
| 27 |
+
|
| 28 |
|
| 29 |
# Load Hugging Face token if needed
|
| 30 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 41 |
# Set model download directory within Hugging Face Spaces
|
| 42 |
model_path = "asset"
|
| 43 |
if not os.path.exists(model_path):
|
| 44 |
+
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Global variables to load components
|
| 47 |
vae_dir = Path(model_path) / "vae"
|
|
|
|
| 50 |
|
| 51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
|
| 53 |
+
DATA_DIR = "/data"
|
| 54 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 55 |
+
LOG_FILE_PATH = os.path.join("/data", "user_requests.csv")
|
| 56 |
+
|
| 57 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
| 58 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
if not os.path.exists(LOG_FILE_PATH):
|
| 62 |
+
with open(LOG_FILE_PATH, "w", newline="") as f:
|
| 63 |
+
writer = csv.writer(f)
|
| 64 |
+
writer.writerow(
|
| 65 |
+
[
|
| 66 |
+
"timestamp",
|
| 67 |
+
"request_type",
|
| 68 |
+
"prompt",
|
| 69 |
+
"negative_prompt",
|
| 70 |
+
"height",
|
| 71 |
+
"width",
|
| 72 |
+
"num_frames",
|
| 73 |
+
"frame_rate",
|
| 74 |
+
"seed",
|
| 75 |
+
"num_inference_steps",
|
| 76 |
+
"guidance_scale",
|
| 77 |
+
"is_enhanced",
|
| 78 |
+
"clip_embedding",
|
| 79 |
+
"original_resolution",
|
| 80 |
+
]
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@lru_cache(maxsize=128)
|
| 85 |
+
def log_request(
|
| 86 |
+
request_type,
|
| 87 |
+
prompt,
|
| 88 |
+
negative_prompt,
|
| 89 |
+
height,
|
| 90 |
+
width,
|
| 91 |
+
num_frames,
|
| 92 |
+
frame_rate,
|
| 93 |
+
seed,
|
| 94 |
+
num_inference_steps,
|
| 95 |
+
guidance_scale,
|
| 96 |
+
is_enhanced,
|
| 97 |
+
clip_embedding=None,
|
| 98 |
+
original_resolution=None,
|
| 99 |
+
):
|
| 100 |
+
"""Log the user's request to a CSV file."""
|
| 101 |
+
timestamp = datetime.now().isoformat()
|
| 102 |
+
with open(LOG_FILE_PATH, "a", newline="") as f:
|
| 103 |
+
try:
|
| 104 |
+
writer = csv.writer(f)
|
| 105 |
+
writer.writerow(
|
| 106 |
+
[
|
| 107 |
+
timestamp,
|
| 108 |
+
request_type,
|
| 109 |
+
prompt,
|
| 110 |
+
negative_prompt,
|
| 111 |
+
height,
|
| 112 |
+
width,
|
| 113 |
+
num_frames,
|
| 114 |
+
frame_rate,
|
| 115 |
+
seed,
|
| 116 |
+
num_inference_steps,
|
| 117 |
+
guidance_scale,
|
| 118 |
+
is_enhanced,
|
| 119 |
+
clip_embedding,
|
| 120 |
+
original_resolution,
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f"Error logging request: {e}")
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def compute_clip_embedding(text=None, image=None):
|
| 128 |
+
"""
|
| 129 |
+
Compute CLIP embedding for a given text or image.
|
| 130 |
+
Args:
|
| 131 |
+
text (str): Input text prompt.
|
| 132 |
+
image (PIL.Image): Input image.
|
| 133 |
+
Returns:
|
| 134 |
+
list: CLIP embedding as a list of floats.
|
| 135 |
+
"""
|
| 136 |
+
inputs = clip_processor(text=text, images=image, return_tensors="pt", padding=True)
|
| 137 |
+
outputs = clip_model.get_text_features(**inputs) if text else clip_model.get_image_features(**inputs)
|
| 138 |
+
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
| 139 |
+
return embedding
|
| 140 |
+
|
| 141 |
|
| 142 |
def load_vae(vae_dir):
|
| 143 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
|
|
|
| 276 |
unet = load_unet(unet_dir)
|
| 277 |
scheduler = load_scheduler(scheduler_dir)
|
| 278 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 279 |
+
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(device)
|
| 280 |
+
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
pipeline = XoraVideoPipeline(
|
| 283 |
transformer=unet,
|
|
|
|
| 292 |
def generate_video_from_text(
|
| 293 |
prompt="",
|
| 294 |
enhance_prompt_toggle=False,
|
| 295 |
+
txt2vid_analytics_toggle=True,
|
| 296 |
negative_prompt="",
|
| 297 |
frame_rate=25,
|
| 298 |
+
seed=646373,
|
| 299 |
num_inference_steps=30,
|
| 300 |
guidance_scale=3,
|
| 301 |
height=512,
|
|
|
|
| 309 |
duration=5,
|
| 310 |
)
|
| 311 |
|
| 312 |
+
if txt2vid_analytics_toggle:
|
| 313 |
+
log_request(
|
| 314 |
+
"txt2vid",
|
| 315 |
+
prompt,
|
| 316 |
+
negative_prompt,
|
| 317 |
+
height,
|
| 318 |
+
width,
|
| 319 |
+
num_frames,
|
| 320 |
+
frame_rate,
|
| 321 |
+
seed,
|
| 322 |
+
num_inference_steps,
|
| 323 |
+
guidance_scale,
|
| 324 |
+
enhance_prompt_toggle,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="t2v")
|
| 328 |
|
| 329 |
sample = {
|
|
|
|
| 372 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 373 |
video_np = (video_np * 255).astype(np.uint8)
|
| 374 |
height, width = video_np.shape[1:3]
|
| 375 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
|
|
|
|
|
|
| 376 |
for frame in video_np[..., ::-1]:
|
| 377 |
out.write(frame)
|
| 378 |
out.release()
|
|
|
|
| 387 |
image_path,
|
| 388 |
prompt="",
|
| 389 |
enhance_prompt_toggle=False,
|
| 390 |
+
img2vid_analytics_toggle=True,
|
| 391 |
negative_prompt="",
|
| 392 |
frame_rate=25,
|
| 393 |
+
seed=646373,
|
| 394 |
num_inference_steps=30,
|
| 395 |
guidance_scale=3,
|
| 396 |
height=512,
|
|
|
|
| 412 |
if not image_path:
|
| 413 |
raise gr.Error("Please provide an input image.", duration=5)
|
| 414 |
|
| 415 |
+
if img2vid_analytics_toggle:
|
| 416 |
+
with Image.open(image_path) as img:
|
| 417 |
+
original_resolution = f"{img.width}x{img.height}" # Format as "widthxheight"
|
| 418 |
+
clip_embedding = compute_clip_embedding(image=img)
|
| 419 |
+
|
| 420 |
+
log_request(
|
| 421 |
+
"img2vid",
|
| 422 |
+
prompt,
|
| 423 |
+
negative_prompt,
|
| 424 |
+
height,
|
| 425 |
+
width,
|
| 426 |
+
num_frames,
|
| 427 |
+
frame_rate,
|
| 428 |
+
seed,
|
| 429 |
+
num_inference_steps,
|
| 430 |
+
guidance_scale,
|
| 431 |
+
enhance_prompt_toggle,
|
| 432 |
+
json.dumps(clip_embedding),
|
| 433 |
+
original_resolution,
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
| 437 |
|
| 438 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="i2v")
|
| 439 |
|
|
|
|
| 474 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
| 475 |
video_np = (video_np * 255).astype(np.uint8)
|
| 476 |
height, width = video_np.shape[1:3]
|
| 477 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
|
|
|
|
|
|
| 478 |
for frame in video_np[..., ::-1]:
|
| 479 |
out.write(frame)
|
| 480 |
out.release()
|
|
|
|
| 493 |
|
| 494 |
def create_advanced_options():
|
| 495 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
| 496 |
+
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
|
| 497 |
+
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=1, maximum=50, step=1, value=30)
|
| 498 |
+
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=5.0, step=0.1, value=3.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
height_slider = gr.Slider(
|
| 501 |
label="4.4 Height",
|
|
|
|
| 564 |
</div>
|
| 565 |
"""
|
| 566 |
)
|
| 567 |
+
with gr.Accordion(" π Tips for Best Results", open=False, elem_id="instructions-accordion"):
|
|
|
|
|
|
|
| 568 |
gr.Markdown(
|
| 569 |
"""
|
| 570 |
π Prompt Engineering
|
|
|
|
| 602 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
| 603 |
lines=5,
|
| 604 |
)
|
| 605 |
+
txt2vid_analytics_toggle = Toggle(
|
| 606 |
+
label="I agree to share my usage data anonymously to help improve the model features.",
|
| 607 |
+
value=True,
|
| 608 |
+
interactive=True,
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
txt2vid_enhance_toggle = Toggle(
|
| 612 |
label="Enhance Prompt",
|
| 613 |
value=False,
|
|
|
|
| 683 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
| 684 |
lines=5,
|
| 685 |
)
|
| 686 |
+
img2vid_analytics_toggle = Toggle(
|
| 687 |
+
label="I agree to share my usage data anonymously to help improve the model features.",
|
| 688 |
+
value=True,
|
| 689 |
+
interactive=True,
|
| 690 |
+
)
|
| 691 |
img2vid_enhance_toggle = Toggle(
|
| 692 |
label="Enhance Prompt",
|
| 693 |
value=False,
|
|
|
|
| 715 |
)
|
| 716 |
|
| 717 |
img2vid_advanced = create_advanced_options()
|
| 718 |
+
img2vid_generate = gr.Button("Step 6: Generate Video", variant="primary", size="lg")
|
|
|
|
|
|
|
| 719 |
|
| 720 |
with gr.Column():
|
| 721 |
img2vid_output = gr.Video(label="Generated Output")
|
|
|
|
| 752 |
)
|
| 753 |
|
| 754 |
# [Previous event handlers remain the same]
|
| 755 |
+
txt2vid_preset.change(fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:])
|
|
|
|
|
|
|
| 756 |
|
| 757 |
txt2vid_generate.click(
|
| 758 |
fn=generate_video_from_text,
|
| 759 |
inputs=[
|
| 760 |
txt2vid_prompt,
|
| 761 |
txt2vid_enhance_toggle,
|
| 762 |
+
txt2vid_analytics_toggle,
|
| 763 |
txt2vid_negative_prompt,
|
| 764 |
txt2vid_frame_rate,
|
| 765 |
*txt2vid_advanced,
|
|
|
|
| 770 |
queue=True,
|
| 771 |
)
|
| 772 |
|
| 773 |
+
img2vid_preset.change(fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[3:])
|
|
|
|
|
|
|
| 774 |
|
| 775 |
img2vid_generate.click(
|
| 776 |
fn=generate_video_from_image,
|
|
|
|
| 778 |
img2vid_image,
|
| 779 |
img2vid_prompt,
|
| 780 |
img2vid_enhance_toggle,
|
| 781 |
+
img2vid_analytics_toggle,
|
| 782 |
img2vid_negative_prompt,
|
| 783 |
img2vid_frame_rate,
|
| 784 |
*img2vid_advanced,
|
|
|
|
| 790 |
)
|
| 791 |
|
| 792 |
if __name__ == "__main__":
|
| 793 |
+
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)
|
|
|
|
|
|